УДК 549.752/.753 DOI 10.19110/1994-5655-2020-6-28-39

В.И. СИЛАЕВ*, А.В. КОКИН**, А.Ф. ХАЗОВ*, Д.В. КИСЕЛЕВА***, В.Н. ФИЛИППОВ*, С.Н. ШАНИНА*

ЗОЛОТОЙ САМОРОДОК «КАЗАНЕНКО»

*Институт геологии им. академика Н.П. Юшкина ФИЦ Коми НЦ УрО РАН, г. Сыктывкар **Российская академия народного хозяйства и госслужбы при Президенте РФ, г. Ростов-на-Дону ***Институт геологии и геохимии им. академика А. Н. Заварицкого УрО РАН, г. Екатеринбург

silaev@geo.komisc.ru

V.I. SILAEV*, A.V. KOKIN**, A.F. KHAZOV*, D.V. KISELEVA***, V.N. FILIPPOV*, S.N. SHANINA*

GOLDEN NUGGET «KAZANENKO»

*N.P.Yushkin Institute of Geology, Federal Research Centre Komi Science Centre, Ural Branch, RAS, Syktyvkar **Russian Academy of National Economy and Civil Service under the President of the Russian Federation, Rostov-on-Don ***A.N.Zavaritsky Institute of Geology and Geochemistry, Ural Branch, RAS, Ekaterinburg

Аннотация

Обсуждаются результаты минералого-геохимических исследований именного золотого самородка с Центрально-Алданского рудного района: морфология, кристаллическая и наноструктура, ксеноминеральные примеси, химический состав, микроэлементы, газово-жидкие включения. По совокупности полученных результатов сделан вывод о том, что наиболее вероятным местом образования золотого самородка «Казаненко» была достаточно зрелая зона окисления (кора выветривания) эоцен-олигоценового возраста на эндогенном золото-малосульфидно-кварцевом месторождении. В неоплейстоцен-голоцене самородок переместился в речную россыпь, где и приобрел кайму облагораживания.

Ключевые слова:

золотой самородок, Казаненко, Центральный Алдан, минералого-геохимические свойства, происхождение

Abstract

The results of mineralogical and geochemical studies of a nominal golden nugget from the Central Aldan ore region: morphology, crystalline and nanostructure, xenomineral impurities, chemical composition, trace elements, gas-liquid inclusions, are discussed. Based on the totality of the results obtained, it was concluded that the most likely place for the formation of the golden nugget «Kazanenko» was a rather mature oxidation zone (weathering crust) of the Eocene-Oligocene age at the endogenous gold-low-sulfide-quartz deposit. In the NeoPleistocene-Holocene, the nugget moved to the river placer, where it acquired a refinement border.

Keywords:

golden nugget, Kazanenko, Central Aldan, mineralogical and geochemical properties, origin

«Все золотые самородки имеют высокую валютную ценность, а некоторые из них – большое научное значение». Инструкция И48–1–79 МЦМ и Минфин СССР, 1979

Введение

В 2011 г. старатели артели «Селигдар» (Республика Саха «Якутия», г. Алдан) подарили Г. Г. Казаненко по случаю его 75-летия золотой самородок № 64.1/7/44 (данные по сертификату: вес — 14.9 г., проба золота — 886.9 (рис. 1)). В 2017 г. этот самородок был безвозмездно передан владельцем в Институт геологии Коми НЦ УрО РАН для минералого-геохимических исследований.

Казаненко Геннадий Григорьевич (1936–2018) родился в г. Новосибирске, в 1957 г. окончил Том-

ский политехнический институт по специальности горный инженер-геолог: поиски и разведка урановых месторождений. В Якутии работал на Алданском щите, занимался геологической съёмкой и поисками Au-урановых месторождений. С 1972 г. по 1999 г. главный геолог Геохимической партии ПГО, курировал геохимические поиски и разведки золоторудных месторождений. Затем 12 лет служил главным геологом геологической экспертизы проектов ПГО «Якутскгеологии» и Геолкома Якутии. Российский экзогенных условиях [17–19]. Скорее всего, живучесть «россыпной» гипотезы определяется тем фактом, что до 90 % золотых самородков были найдены именно в речных россыпях. Ради справедливости следует отметить, что уже появились данные об образовании небольших (до 8–11 мм) золотых самородков действительно в речных россыпях, но погребенных, в обстановке которых обломочные золотины довольно активно обрастают «новым» золотом, возможно, при участии бактерий [20].

Рис. 1. Золотой самородок «Казаненко» — размеры и форма. Fig. 1. Golden nugget «Kazanenko» — size and shape.

отличник разведки недр.

Проблема генезиса золотых самородков уже на протяжении, по крайней мере, 150 лет остается неразрешенной. К настоящему времени более или менее популярны три гипотезы [1].

Согласно *первой* гипотезе, самородки имеют эндогенное происхождение, образуя в верхних частях рудных тел как бы «рудные столбы в миниатюре» вследствие обрастания ранних частиц эндогенного золота гидротермально-переотложенным снизу золотым веществом [2, 3].

По *второй* гипотезе золотые самородки — результат перегруппировки эндогенного золота в зоне окисления первичных золоторудных месторождений [4–7] с образованием его вторичных гипергенных сгущений [8–16].

Третья гипотеза, отечественным автором которой считается В. А. Обручев, трактует золотые самородки как экзогенное образование в речных россыпях. Эта идея до настоящего времени является наиболее популярной, хотя практически никак не обоснована убедительными соображениями о механизме укрупнения обломочных частиц золота в

Геологический контекст

Исследуемый самородок был отобран из речной россыпи на территории Центрального Алдана, точнее — на территории так называемого Эльконского горста, который в настоящее время рассматривается как перспективный ураново-золоторудный район (рис. 2). В 2006 г. здесь на основе ЗАО «Лунное» и «Золото Селигдара» было организовано объединенное ЗАО для разведки и добычи урана, золота и серебра на месторождении Лунное. Коренной источник самородка «Казаненко» остался неизвестным, хотя по геологическим соображениям его условно относили к мезозойским проявлениям Аи-малосульфидно-кварцевой и Аи-сульфотеллуридной формаций.

Как известно, геологическая история Центрально-Алданского рудного района подразделяется на четыре этапа: 1) доплатформенный палеоархейпалеопротерозойский; 2) платформенный палеопротерозой-раннетриасовый; 3) эпиплатформенный (режим ТМА) мезозойский; 4) платформенный кайнозойский [21]. Доплатформенный этап (3.7– 1.65 млрд лет) представлен древнейшими терригенно-осадочными толщами, метаморфизованными до гранулитовой и амфиболитовой фаций¹, и магматическими комплексами палеовулканиты и плагиограниты. С этим этапом связаны месторождения кварцитов, флогопита и апатита.

Платформенный этап (1.65– 0.224 млрд лет), начавшийся с внедрения карбонатитов. Затем преобладало терригенно-карбонатное и карбонатное морское осадкообразование, спорадически сопровождавшееся внедрением долеритовых силлов. Характеризуется месторождениями строительных материалов.

Эпиплатформенный этап – эпоха тектоно-магматических активизаций (252–70 млн. лет). В позднем триасе-ранней юре происходила субдукция океанической коры под

Алдано-Становой хребет, сопровождавшаяся вспышкой магматизма. Средняя-поздняя юра — эпоха предорогенного вулканизма, мел — время формирования активной континентальной окраины и эндо-генного рудообразования. Аи-урановые проявления так называемого эльконского типа, связанные с карбонат-каливошпатовыми метасоматитами гумбеитовой формации, локализовались в метаморфитах фундамента [22, 23], а месторождения Аималосульфидно-кварцевой и Аи-сульфотеллуридной формаций [25, 26] получили распространение в осадочных толщах и магматитах мезозойского платформенного чехла.

Кайнозойский этап — начался формированием раннепалеоценовой поверхности выравнивания с древней речной сетью. В позднем эоценераннем олигоцене образовались каолинитовые коры выветривания². Миоцен — время накопления аллювиальных, делювиальных, солифлюкционных и озерно-болотных осадков. В плиоцене появились красно-пестроцветно-смектитовые коры выветривания, а в эоплейстоцене на основе дочетвертичной речной сети стала формироваться современная речная сеть. Этому этапу соответствуют месторождения строительных материалов, торфов, речных золотых россыпей.

Таким образом, интервал геологической истории, имеющий, вероятно, отношение к образованию самородка «Казаненко», может быть подразделен на три отрезка: 1) образование коренных золоторудных месторождений в обстановке активной континентальной окраины (170–150 млн лет); 2)

Рис. 2. Геологическое строение Евразии и основные типы золоторудных месторождений [19]: 1 — кристаллические массивы — выступы фундамента древних платформ (Ан — Анабарский, Ал — Алданский); 2 — складчатые системы; 3 — осадочные чехлы платформ; 4 — океаны; 5, 6 — соответственно эндогенные и россыпные золоторудные месторождения.

Fig. 2. Geological structure of Eurasia and the main types of gold ore deposits [19]: 1 — crystalline massives — protrusions of the basement of ancient platforms (AH — Anabar, A π — Aldan); 2 — folded systems; 3 — sedimentary covers of platforms; 4 — oceans; 5, 6 — endogenous and placer gold ore deposits, respectively.

формирование каолинитовых кор выветривания в платформенных условиях (40–30 млн лет); 3) начавшееся в эоплейстоцене (1.8–0.8 млн лет) развитие современной речной сети с образованием в них золотых россыпей.

Методы исследований

Исследования самородка «Казаненко» осуществлялись с использованием комплекса методов: оптической микроскопии в режиме отраженного света (компьютеризированный комплекс OLYMPUS ВХ51); фото- и дифрактометрической рентгенометрии (XRD-600 Jeol); рентгенофлюоресцентного анализа (XRD-1800 Shimazu); определения нанометровой пористости по кинетике адсорбции-десорбции азота (Nova 1200e Quantachrome Instruments); массспектрометрии с индуктивно-связанной плазмой (ELAN9000 Perkin Elmer); газовой пирохроматографии (Цвет-800 с пиролитической приставкой); аналитической СЭМ (JSM-6400 Jeol и Teskan Vega 3); изотопной масс-спектрометрии (проточный массспектрометр Delta V Avantage и аналитический комплекс Thermo Fisher).

ИСП-МС анализы выполнены в ЦКП УрО РАН «Геоаналитик» при поддержке темы № ААА-А18-118053090045 государственного задания Института геологии и геохимии УрО РАН. Остальные аналитические работы осуществлены в ЦКП «Геонаука» в Институте геологии Коми НЦ УрО РАН.

Физические свойства самородка

Исследуемый образец характеризуется уплощенно-неправильной формой, размерами 23 × 16 × 3 мм, заглаженной поверхностью и внутренним микро-тонкозернистым строением. В режиме аналитической СЭМ (рис. 3) в приповерхностной части самородка выявляются многочисленные микровключения кварца и примазки каолинита и оксигидроксидов алюминия-железа. Во внутренней части образца

¹Д. С. Коржинский, конец 1930-х гг.: первая модель осадочной дифференциации в архее Алдана и петрологическая теория регионального метаморфизма терригенно-осадочных толщ с их разделением на минералогические фации глубинности, прогноз обнаружения флогопитовых месторождений.

²Глобальная эпоха образования латеритных кор выветривания, например, на Полярном Урале к этой эпохе относятся Софроновское месторождение гипергенных фосфоритов и Парнокское марганцевое месторождение.

Рис. 3. СЭМ-изображения поверхности (а-з) и среза (и, к) самородка в режимах вторичных (а, в, д, ж, и) и упруго-отраженных (б, г, е, з, к) электронов. Стрелками показаны ксеноминеральные включения и примазки (Кв — кварц, Клн — каолинит).

Fig. 3. SEM images of the surface (a-3) and cut (μ , κ) of the nugget in the modes of secondary (a, b, μ , κ , μ) and elastically reflected (6, r, e, 3, κ) electrons. Arrows indicate xenomineral inclusions and smears (Kb — quartz, K μ H — kaolinite).

обнаружены включения кварца и полевых шпатов. Размер включений и примазок на поверхности: для кварца – (1–140) × (1–75) мкм, для каолинита и оксигидроксидов — (15–95) × (15–80) мкм. Внутри самородка размер большинства включений варьируется в пределах (100–1050) × (700–750) мкм, спорадически достигая (1000– 1050) × (700–750) мкм. Таким образом, размеры ксеноминеральных включений внутри самородка превышают таковые у включений и примазок в приповерхностной его части на один-два порядка.

Фазовая диагностика самородка осуществлялась Б. А. Макеевым фоторентгеновским и рентгенодифракционным методами. На рентгенограммах зафиксированы все основные отражения в структуре золота (Å, в последовательности снижения интенсивностей, в скобках индексы): 2.334 (111) - 1.226 (311) -1.173 (222) - 2.026 (200) - 1.018 (400) - 1.434 (220) - 1.004 (420). Параметр элементарной ячейки составляет 4.054 ± 0.006 Å, что довольно близко к значению для чистого металла. Судя по дебаеграммам, исследуемый самородок имеет типичное для природных самородков микрополикристаллическое строение. В качестве минеральных примесей рентгеновски диагностированы кварц, альбит, ортоклаз и каолинитоподобный минерал.

В связи с выявлением микрополикристаллического строения было интересно проанализировать образец на наличие нанометровой пористости. Согласно полученным данным, суммарная поверхность нанопор в самородке достигает 0.694 м²/г, удельный суммарный объем нанопор составляет 0.8 мм³/г, средний размер нанопор равен 2.298 нм, средний объем индивидуальной нанопоры 50.85 нм³, условное число пор в удельном объеме — 1 593. Все полученные данные на два-три порядка уступают данным по нанопористым композитам, например, костным. В отличие от таких органоминеральных композитов проанализированный самородок характеризуется преимущественно микрометровой размерностью не только кристаллических индивидов, но и интерстициальных пор.

Газово-жидкие включения

Анализ состава газово-жидких включений в исследуемом самородке осуществлялся пирохроматографическим методом при нагревании образца до 400°С, что является опти-

мальным для самородного золота из месторождений Юго-Восточной Якутии [27]. По данным проведенного нами анализа в самородке «Казаненко» содержание таких включений достигает 2 112 мкг/г. В их состав входят как неорганические, так и органические компоненты, мкг/г: H₂O 1 981; CO₂ 110.4; CO 20; CH₄ 0.059; C₂H₄ 0.052; C₂H₆ 0.006; C₃H₆ 0.032; C₃H₈ 0.09; C₄H₈ 0.229; i-C₄H₁₀ 0.023. Доля органических газов в общем балансе оценивается в 0.02 %. По пропорции в группах неорганических и органических газов проанализированные включения отвечают продуктам мантийно-коровых взаимодействий [28, 29]. При этом наличие в составе органических газов только изобутана может свидетельствовать об их абиогенном происхождении.

Проведенные дополнительные исследования привели к обнаружению в самородке микрочастиц конденсированного углеродного вещества с изотопным составом углерода в пределах -28...-25 ‰. Это практически соответствует изотопному составу углерода в углеродном веществе, дисперсно-рассеянном в продуктах современного вулканизма [30]. Таким образом подтверждается вывод об абиогенном происхождении УВ в исследованном самородке «Казаненко».

Химический состав

По данным аналитической СЭМ (табл. 1) самородок «Казаненко» заметно различается по составу золота во внутренней и приповерхностной частях.

Во внутренней части состав золота колеблется от умеренно-высокопробного до весьма высокопробного, отвечая в среднем высокопробному. При этом по содержанию собственно золота самородок здесь характеризуется очень большой однородностью (коэффициент вариации — менее 2 %). В качестве основных примесей к золоту выступают Ад и Fe, спорадически отмечаются Hg, Si, Ti, Al, Ca, Na, K, Cl. В приповерхностной части самородок сложен высокопробным–весьма высокопробным, в среднем – весьма высокопробным золотом, из примесей здесь установлены только Ag и Fe.

Таким образом, в исследуемом самородке приповерхностная часть в среднем на 3.5–4 % более высокопробна, чем внутренняя часть. Важно также подчеркнуть, что по результатам наших исследований самородок оказался богаче золотом во внутренней части на 6 %, а на поверхности на 8 % по сравнению с данными, приведенными в сертификате (рис. 1).

Анализ состава ксеноминеральных включений и примазок в исследуемом самородке показал (табл. 2), что во внутренней части они представлены кварцем, альбитом состава (Na_{0.93-0.96}Ca_{0.04-0.06})[Al_{1-1.09}Si_{2.91-3}O₈] и ортоклазом K_{0.9-1}[Al_{0.98-1}Si₃O₈]. Кроме того, растворением здесь выявлены включения стехиометричного кераргирита, мас. %: Ад 75.29; Cl 24.71 (рис. 4). Последнее согласуется с отмеченным выше фактом обнаружения в составе самородка хлора. Обнаружение примеси хлорида серебра может иметь отношение к вопросу миграции золота в эндогенных обстановках в составе комплексных хлоридных соединений, указывая тем самым на первоначально эндогенное происхождение слагающего самородок «Казаненко» металла.

На поверхности самородка дополнительно к кварцу присутствуют примазки железистого каолинита состава (Al_{3.6-4}Fe_{0-0.4})[Si₄O₁₀](OH)₈ и гётитаалюмогётита (Fe_{0.59-0.98}Al_{0-0.32}Ti_{0-0.05}Mg_{0-0.05}Ca_{0-0.03})O (OH). Очевидно, что, если «центральные» включения в самородке могут ассоциироваться с эндогенными обстановками, то минералы-примеси на поверхности самородка больше соответствуют обстановкам гипергенного минералообразования, т. е. могут указывать на пребывание самородка в зоне окисления на золоторудном месторождении.

Как известно, генеральное распределение самородков по пробе золота характеризуется широким размахом от 750 до 960 ‰ и сильно выраженной модой при 885 ‰ [2]. В рамках такого распределения состав исследуемого самородка сдвинут в весьма высокопробную область, что указывает на его значительную неординарность. Столь высокопробное золото нами наблюдалось только в зоне окисления Каталамбинского золото-малосульфидно-кварцевого месторождения на Приполярном Урале [14].

Важным фактом также является упомянутое выше различие по пробе золота внутренней и приповерхностной частей исследуемого самородка. Как известно, появление высокопробных оболочек характерно для аллювиальных золотин, на которых они образуются вследствие «вымывания» с поверхности части примесей [31-33]. В рассматриваемом случае мы видим, что самородок «Казаненко» по пробе золота в приповерхностной части может быть отождествлен с золотинами из речных россыпей ближнего сноса, но по пробе золота во внутренней части соответствует сильно облагороженным золотинам в россыпях дальнего сноса (рис. 5, а). На диаграмме, обобщающей генетические разновидности самородного золота (рис. 5, б), исследуемый самородок попадает на границу областей гипергенно-модифицированного золота и золотин, аномально облагороженных по всему объему, в специфичных тиманских россыпях. В целом получается, что самородок «Казаненко» мог действительно образоваться в условиях зоны окисления эндогенного золоторудного месторождения и лишь впоследствии переместиться в речную россыпь, где и подвергся дополнительному облагораживанию золота на своей поверхности.

Микроэлементы

В составе исследуемого самородка установлено более 30 микроэлементов, валовые содержания которых во внутренней и приповерхностной частях сильно различаются — на поверхности самородок богаче микроэлементами в 9-10 раз (табл. 3). В сравнении с золотинам из кайнозойских россыпей Южной Якутии [34] самородок «Казаненко» внутренней своей части беднее микро-BO элементами в 6-6.5 раз, но в приповерхностной части он ими богаче тех же золотин в 1.5 раза. В общем, получается, что этот самородок внутренней своей частью отличается от россыпного золота многократно пониженным содержанием микроэлементов, а вот на поверхности он по этому свойству оказался близким к золотинам в россыпях.

Таблица 1

Химический состав самородного золота во внутренней (1—9) и приповерхностной (10—27) частях самородка, мас. %

Table 1

Chemical	composition	of native	gold in	the in	ıer (1–	-9) and	l near-surfa	ce (10-	-27)	parts
			of th	ie nugg	et, wt.	%				

№ п/п	Au	Ag	Hg	Fe	Ti	Проба	Эмпирическая формула
1	91.82	8.18	Не обн.	Не обн.	Не обн.	918	Au _{0.86} Ag _{0.14}
2	92.23	7.77	«	«	«	922	Au _{0.87} Ag _{0.13}
3	92.2	7.8	«	×	«	922	Au _{0.87} Ag _{0.13}
4	91.82	8.18	«	×	«	918	Au _{0.86} Ag _{0.14}
5	92.18	7.82	«	×	«	922	Au _{0.87} Ag _{0.13}
6	92.41	7.59	«	×	«	924	Au _{0.87} Ag _{0.13}
7	96.09	1.67	0.36	1.30	0.08	961	Au _{0.93} (Ag,Hg) _{0.03} Fe _{0.04}
8	92.33	7.27	Не обн.	0.40	Не обн.	923	Au _{0.86} Ag _{0.12} Fe _{0.02}
9	89.51	6.23	«	0.87	«	895	Au _{0.86} Ag _{0.11} Fe _{0.03}
Среднее	92.29	6.95	0.04	0.29	0.01	923	$Au_{0.8693}Ag_{0.03-0.14}Fe_{0-0.07}$
СКО	1.68	2.06	0.12	0.48	0.03	17	
10	94.83	5.17	Не обн.	Не обн.	Не обн.	948	Au _{0.91} Ag _{0.09}
11	92.31	7.68	«	«	«	923	Au _{0.87} Ag _{0.13}
12	92.83	6.63	«	0.54	«	928	Au _{0.87} Ag _{0.11}
							Fe _{0.02}
13	92.66	7.34	«	Не обн.	«	927	Au _{0.87} Ag _{0.13}
14	92.93	6.39	«	0.68	«	929	Au _{0.87} Ag _{0.11}
							Fe _{0.02}
15	93.37	5.95	«	5.95	«	934	Au _{0.75} Ag _{0.09}
							Fe ₀₁₆
16	91.56	8.44	«	Не обн.	«	916	Au _{0.86} Ag _{0.14}
17	96.6	3.4	«	«	«	966	Au _{0.89} Ag _{0.11}
18	100	He	«	«	«	1000	Au
		обн.					
19	96.15	3.85	«	«	«	962	Au _{0.93} Ag _{0.07}
20	100	He	«	«	«	1000	Au
		обн.					
21	97.25	2.75	«	«	«	973	Au _{0.95} Ag _{0.05}
22	99.15	«	«	0.85	«	992	Au _{0.97} Fe _{0.03}
23	100	«	«	Не обн.	«	1000	Au
24	96.34	2.85	«	0.81	«	963	Au _{0.92} Ag _{0.05} Fe _{0.03}
25	95.29	4.71	«	Не обн.	«	953	Au _{0.92} Ag _{0.08}
26	99.3		«	0.7	«	993	Au ₀₉₈ Fe _{0.02}
27	96.59	3.41	«	Не обн.	«	966	Au _{0.94} Ag _{0.06}
Среднее	96.02	3.96	He	0.56	Не опр.	960	$Au_{0.75-1}Ag_{0-0.14}Fe_{0-0.16}$
СКО	2.98	2.93	опр.	1.42		30	

Примечание. Результаты № 7-8 получены на СЭМ Teskan Vega 3, остальные – на СЭМ JSM-6400 Jeol.

Значительный интерес для оценки происхождения исследуемого самородка имеет анализ ассоциации микроэлементов с позиции их центробежноцентростремительных свойств [35]. Расчет показал, что, несмотря на различие практически на порядок в суммарном содержании микроэлементов во внутренней и приповерхностной частях самородка, распределения микроэлементов по крайним группам ЦЦС в этих частях оказались довольно близкими (%,первое значение – внутренняя часть, второе – приповерхностная): центростремительные (Ц1) – 66.14 и 53.66; минимально-центробежные (Ц2) - 0.25 и 29.49; дефицитно-центробежные (Ц3) – 28.72 и 3.66; центробежные (Ц₄) - 4.89 и 13.19. Значения групповых отношений Ц₄/Ц₁ составили соответственно 0.07 и 0.25.

На диаграмме генерального тренда важнейших минералов в золоторудных месторождениях по пропорциям между ЦЦС-группами микроэлементов [36] состав самородка «Казаненко» демонстрирует наибольшую степень обогащения центростремительными элементами (рис. 6). Это выглядит вполне закономерным, если исходить именно из гипотезы образования первоначального вещества самородка в эндогенных относительно глубинных условиях с низкой степенью геохимической дифференциации рудообразующего вещества [37].

Среди обнаруженных в исследуемом самородке микроэлементов есть очевидные индикаторы конкретных эндогенных оруденений. Такие элементы подразделяются на две группы, отвечающие разным рудным формациям.

Таблица 2 Химический состав минеральных примазок на поверхности самородка, мас. %

 Table 2

 Chemical composition of mineral smears on the nugget

 surface, wt. %

Nº	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O
п/п					_			
1	65.89	He	6.27	27.84	He	He	He	He
		обн.			обн.	обн.	обн.	обн.
2	66.95	«	20.64	He	«	1.38	11.03	«
				обн.				
3	65.01	«	18.13	«	«	He	He	16.8
						обн.	обн.	6
4	63.34	«	5.93	30.73	«	«	«	«
5	72.63	«	21.39	«	«	0.67	5.31	«
6	64.76	«	18.26	«	«	«	He	16.9
							обн.	8
7	37.81	1.35	33.86	25.53	«	1.45	«	He
								обн.
8	23.31	1.05	17.91	52.86	1.97	1.86	«	1.04
9	24.68	0.84	10.52	62.83	«	«	«	1.13
10	38.36	1.37	34.36	25.91	«	«	«	He
								обн.
11	24.52	1.11	18.84	55.53	«	«	«	«
12	24.97	0.85	10.64	63.54	«	«	«	«

Рис. 5. Вариации эпигенетического облагораживания золота в условиях россыпей и зон окисления коренных золоторудных месторождений. На **a**: 1 – речные россыпи ближнего сноса на Полярном Урале [38]; 2 – речные россыпи дальнего сноса в Предуральском краевом прогибе [33]; 3 – самородок «Казаненко». На **б**: 1 – коренные золоторудные проявления на Полярном Урале; 2 – гипергенно-облагороженное золото на Каталамбинском золоторудном проявлении, Приполярный Урал [13, 14]; 3 – речные россыпи ближнего сноса на Полярном Урале; 4 – тиманские россыпи с аномально облагороженным золотом по всему объему золотин [32, 39]; 5 – самородок «Казаненко».

Fig. 5. Variations in epigenetic refinement of gold in the conditions of placers and zones of oxidation of primary gold deposits. On a: 1 - near-drift river placers in the Polar Urals [38]; 2 - far-drift river placers in the Pre-Ural foredeep [33]; 3 - "Kazanenko" nugget. On 6: 1 - primary gold ore occurrences in the Polar Urals; 2 - hypergenically refined gold at the Katalamba gold ore occurrence, Subpolar Urals [13, 14]; <math>3 - near-drift river placers in the Polar Urals; 4 - Timan placers with anomalously refined gold throughout the entire volume of gold grains [32, 39]; 5 - "Kazanenko" nugget.

Рис. 4. Выделенный из самородка «Казаненко» кераргирит.

Fig. 4. Cerargyrite isolated from the nugget "Kazanenko".

В первую группу входят катионообразующие элементы (в скобках — принадлежность к группам ЦЦС): Ni (Ц1), Cu (Ц₁), Zn (Ц₂), Hg (Ц₃), Pb (Ц₄), W (Ц₄). Это элементы-индикаторы, характерные в условиях Южно-Якутского региона для золото-малосульфидно-кварцевой и золото-полиметаллической формаций. Примером из этих формаций первой здесь может служить Au-Hg-сульфидное месторождение Кючус, а примером второй — Au-Cu-W месторождение Агылки [25, 26]. Приведенные на рис. 6 данные показывают, что среди катионообразующих элементов и во внутренней, и в приповерхностной частях самородка стабильно преобладают Ni, Cu, Hg — наиболее типоморфные именно для золото-малосульфидно-

> кварцевой формации, а Zn и W значительно уступают, особенно во внутренней части самородка.

> Вторую группу обанионообразуюразуют щие элементы: Se (Ц₃), Te (\amalg_3) , Bi (\amalg_3) , As (\amalg_3) , типичные для Аи-сульфотеллуридной формации, пространственно связанной в Южном Верхоянье Якутии с проявлениями кислого магматизма. В качестве примера такой формации можно назвать золоторудное месторождение Одержимое — в настоящее время перспективный объект для промышленного освоения руд Au-Bi-Te, а также рудопроявления Курумское и Наганжинское. Данные, приведенные на рис. 7, демонстрируют как для внутренней, так и приповерхностной частей самородка резкое доминиро-

Рис. 6. Пропорции групповых содержаний микроэлементов в минералах эндогенных рудных месторождений и их генеральный тренд по ЦЦС микроэлементов (показан стрелкой). Минералы: 1 – пирит, 2 – арсенопирит, 3 – халькопирит, 4 – борнит, 5 – сфалерит, 6 – галенит, 7 – хальковин, 8 – барит, 9 – золото во внутренней части и на поверхности самородка «Казаненко». Fig. 5. Proportions of group contents of trace elements in minerals of endogenous ore deposits and their general trend for the centrifugal-centripetal forces (ССF) of trace elements (shown by the arrow). Minerals: 1 – pyrite, 2 – arsenopyrite, 3 – chalcopyrite, 4 – bornite, 5 – sphalerite, 6 – galena, 7 – chalcosine, 8 – barite, 9 – gold in the inner part and on the surface of the "Kazanenko" nugget.

Рис. 7. Распределение основных элементов-примесей по логарифмам концентраций в составе самородка «Казаненко»: В, П — соответственно внутренняя и приповерхностная части самородка.

Fig: 7. Distribution of the main elements-impurities by logarithms of concentrations in the composition of the "Kazanenko" nugget: B, Π — respectively, the inner and near-surface parts of the nugget.

вание теллура, что характерно для относительно глубинных по источникам сульфотеллуридных минерализаций и оруденений. Возрастание содержаний других элементов рассматриваемой группы в приповерхностной части самородка, возможно, отражает результат уже гипергенно-экзогенного его изменения.

Таким образом, результаты геохимического изучения не только подтверждают сделанный выше вывод о первоначально эндогенном происхождении

Таблица 🗄	3
-----------	---

Содержание микроэлементов в самородке, г/т Table 3

The content of trace elements in the nugget, \mathbf{g}/t						
Nº	Элементы	Внутренняя	Поверхность			
п/п		часть	-			
1	Fe	Не обн.	16663.906			
1	Cr	Не обн.	11.074			
2	Ni	91.571	42.105			
3	Cu	703.066	544.886			
С	умма Ц1	794.637	12261.97			
4	Р	Не обн.	6092.84			
5	Ca	«	383.581			
6	Sc	«	0.928			
7	V	«	13.665			
8	Zn	2.97	249.588			
С	умма Ц2	2.97	6740.602			
9	S	Не обн.	591.101			
10	As	0.776	12.561			
11	Se	1.469	4.144			
12	Те	87.164	29.172			
13	Mo	Не обн.	0.368			
14	Cd	1.001	0.762			
15	Sn	Не обн.	0.27			
16	Hg	255.248	197.44			
17	Bi	0.68	1.169			
С	умма Ц ₃	346.338	836.987			
	Si	Не обн.	2679.85			
18	K	«	243.964			
19	Li	0.623	3.611			
20	Zr	0.054	0.646			
21	Nb	0.136	2.741			
22	Та	Не обн.	2.739			
23	W	0.019	4.159			
24	TI	Не обн.	0.093			
25	Pb	59.54	67.378			
26	Y	Не обн	0.538			
27	La	0.524	2.194			
28	Ce	0.919	4.949			
29	Pr	0.066	0.375			
30	Nd	0.176	1.267			
31	Sm	Не обн.	0.361			
C	умма Ц₄	62.68 3014.86				
	Итого	1205.988	22854.43			

вещества самородка «Казаненко», но и свидетельствуют о проявлении в его первичных свойствах признаков двухформационности, т. е. признаков Аималосульфидно-кварцевой и Аи-сульфотеллуридной формаций, наиболее характерных для соответствующей территории. Следует подчеркнуть, что в составе исследуемого самородка не были выявлены примеси ни U, ни Th, которые свидетельствовали бы о геохимической связи самородка с Аиурановой формацией.

Заключение

Полученные результаты позволяют сделать следующие выводы.

По химическому составу исследованный самородок во внутренней части отвечает в среднем высокопробному золоту, а на поверхности — весьма высокопробному. То есть самородок обладает каймой облагораживания, обычно характерной для золотин в речных россыпях. Среди ксеноминеральных включений внутри самородка выявлены кварц, полевые шпаты и галогены серебра (кераргирит), что может указывать на эндогенное образование вещества самородка, а на поверхности обнаружены примазки каолинита и гётита-алюмогётита — индикаторы пребывания самородка в зоне окисления. В самородке выявлены газово-жидкие включения, почти нацело сложенные водой с незначительной примесью CO₂ и CO. Среди органических газов преобладают метан и бутилен. Присутствие изобутана в отсутствии бутана, а также обнаружение в самородке конденсированного углеродистого вещества с изотопным составом углерода как в вулканитах может указывать на абиогенное происхождение этих примесей в самородке.

В составе самородка установлены более 30 микроэлементов, общее содержание которых во внутренней части многократно уступает таковому в золотинах из речных россыпей на территории Южной Якутии. На поверхности самородка оно близко к упомянутым золотинам. С позиций геохимической классификации элементов по Ю. Г. Щербакову ассоциации микроэлементов внутри и на поверхности исследованного нами самородка аномально обогащены центростремительными элементами, значительно преобладая по этому свойству над всеми исследованными нами сульфидами в эндогенных золоторудных месторождениях. Это вполне соответствует гипотезе образования вещества самородка в эндогенном относительно глубинном месторождении с низкой степенью геохимической дифференциации. В первичных геохимических свойствах самородка проявляются признаки двухформационности – Аи-малосульфидно-кварцевой и Аu-сульфотеллуридной рудных формаций, наиболее характерных для соответствующей территории. Признаков связи самородка с Аи-урановой формацией не установлено.

Таким образом, из совокупности минералогогеохимических свойств следует, что наиболее вероятным местом образования золотого самородка «Казаненко» была достаточно зрелая зона окисления (кора выветривания) эоцен-олигоценового возраста на, вероятнее всего, эндогенном золото-малосульфидно-кварцевом месторождении. В неоплейстоцен-голоцене самородок переместился в речную россыпь, где и приобрел кайму облагораживания.

За ценное сотрудничество авторы благодарят к. г.- м. н. Б. А. Макеева, инженера-технолога Е. М. Тропникова, химика-технолога С. Т. Неверова, н. с. В. А. Капитанову и вед. инженера-химика И. В. Смолеву.

Литература

- 1. Посухова Т. В. Золотые кладовые природы // Соросовский образовательный журнал. 2001. Т. 7. № 10. С. 67-74.
- Самусиков В. П. Самородки золотая загадка природы // Гипотезы и факты. 2007. № 1. С. 59-64.
- 3. Соболевский В. И. Благородные металлы. Золото. М.: Знания, 1970. 47 с.

- 4. Альбов М. Н. Вторичная зональность золоторудных месторождений Урала. М.: Гостехиздат, 1960. 216 с.
- 5. Альбов М. Н. Закономерности распределения золота в зоне гипергенеза жильных месторождений // Минералогия зоны гипергенеза. М.: Наука, 1980. С. 15–19.
- Поведение золота в зоне окисления золотосульфидных месторождений / В.М. Крейтер, В.В. Волынский, И.С. Волынский, А.Н. Кре стовников, В.В. Кувичинский. М.: Госгеолтехиздат, 1958. 268 с.
- Мурзин В. В., Григорьев Н. А., Менцер Э. И. О механизме укрупнения частиц золота в гипергенном ореоле остаточного типа // Доклады АН СССР. 1985. Т. 284. № 4-5. С. 956-959.
- 8. Новгородова М.И., Генералов М.Е., Трубкин Н.В. Новое золото в корах выветривания Южного Урала (Россия) // Геология рудных месторождений. 1995. Т. 37. № 1. С. 40-53.
- 9. Полякова Т. П., Ридзюнская Н. М., Николаева Л. А. Золото в корах выветривания Урала // Руды и металлы. 1995. № 1. С. 25-40.
- Ридзюнская Н. М., Полякова Т. П., Ладыгин А. И. Золотоносные коры выветривания Приполярного Урала // Руды и металлы. 1996. № 4. С. 38-45.
- 11. Росляков Н.А. Геохимия золота в зоне гипергенеза. Новосибирск: Наука, 1981. 238 с.
- 12. Савва Н. Е., Пальянов Г. А., Колова Е. Е. Минералы золота и серебра в зоне вторичного сульфидного обогащения (рудопроявление Крутое, Северо-Восток России) // Вестник Северо-Восточного научного центра Дальневосточного отделения РАН, 2010. С. 33-45.
- 13. Хазов А. Ф. Мезо-кайнозойские коры выветривания на убого золотоносных субстратах (Приполярный Урал) // Вестник Института геологии Коми НЦ УрО РАН, 2001. № 6. С. 19–20.
- 14. *Хазов А. Ф., Петровский Д. В.* Генетические особенности гипергенно-модифицированного золота в корах выветривания // ДАН. 2007. Т. 415. № 5. С. 533-537.
- Bowell R. J. Suppergene gold mineralogy at Ashanti Ghana: implications for the Suppergene behavior of gold // Miner. Mag. 1992. Vol. 56. No. 4. P. 545-560.
- Man A. W. Mobility of Gold and Silver in Lateritic Weathering Profiles: Some Observations from Western Australia // Econ. Geol., 1984. Vol. 79. No. 1. P. 38-49.
- 17. Клепиков В. Н. Крупнейшие самородки золота из аллювиальных россыпей Северо-Востока // Колыма. 1992. № 10–11. С. 14–20.
- 18. Петровская Н. В. Самородное золото. М.: Наука, 1973. 348 с.
- 19. Петровская Н. В. Золотые самородки. М.: Наука, 1993. 191 с.
- 20. Силаев В. И., Хазов А. Ф., Чайковский И. И., Филиппов В. Н. «Живая» золотоносная россыпь на реке Большой Шалдинке // Вестник

Института геологии Коми НЦ УрО РАН, 2005. № 9. С. 4—9.

- 21. Рукович А. В. История геологического развития Центрального-Алданского рудного района (ЦАРР) // Advances in current Natural Sciences. 2016. № 11. Р. 186–190.
- 22. Бойцов В. Е., Пилипенко Г. Н., Дорожкина Л. А. Золоторудные и золото-урановые месторождения Центрального Алдана. Т. 2: Стратегические виды рудного сырья. М.: ИГЕМ РАН, 2006. С. 215–240.
- 23. Бойцов В. Е., Пилипенко Г. Н., Дорожкина Л. А. Новый уникальный тип золото-урановых (браннеритовых) руд Эльконского рудного узла (Центральный Алдан) // RMSDPI 2006-2-6-0. С. 17-19.
- 24. Борисенко А. С., Наумов Е. А., Оболенский А. А. Типы золото-ртутных месторождений и условия их образования // Геология и геофизика. 2006. Т. 47. № 3. С. 342–354.
- 25. Кокин А. В. Золоторудное проявление Одержимый – перспективный объект для промышленного освоения золота, висмута и теллура // Геология и минерально-сырьевые ресурсы Северо-Востока России: Материалы VII Всероссийской научно-практической конференции. Т. 1. Якутск, 2017. С. 90–95.
- 26. Кокин А. В. Оценка перспективности рудных объектов. Ростов-на-Дону: РостИздат, 2005. 347 с.
- 27. Кокин А. В. Термобарометрия самородного золота и его минералов-спутников из месторождений Юго-Восточной Якутии // Геология и геофизика. 1981. № 5. С. 74—79.
- Fluid Phases in Carbonado and Their Genetic Significance / V.A. Petrovsky, V.I. Silaev, A.E. Sukharev, S. N. Shanina, M. Martins, J. Karfunkel // Geochemistry International. 2008. Vol. 46. No. 7. P. 693-710.
- Petrovsky D. V., Silaev V. I., Zharkov V. A., Petrovsky V. A. Native gold and companion Minerals in the Cenozoic Sediments of the Ural Fore deep // Geology of Ore Deposits, 2012. Vol. 54. No. 6. P. 474-486.
- Минерально-фазовый парагенезис в эксплозивных продуктах современных извержений вулканов Камчатки и Курил. Часть 1. Алмазы, углеродные фазы, конденсированные органоиды / В.И. Силаев, Г.А. Карпов, Л.П. Аникин, Е.А. Васильев, Г.П. Вергасова, Н.В. Смолева // Вулканология и сейсмология. 2019. №5. С. 54-67.
- 31. Литвиненко И. С., Шилина П. А. Гипергенные новообразования золота из россыпных месторождений Нижне-Мякитского руднороссыпного поля, Северо-Восток России // Руды и металлы. 2017. № 1. С. 75-90.
- 32. Майорова Т. П. Минералогия и типоморфизм золота кайнозойских россыпей севера Урала и Тимана // Руды и металлы. 1996. № 4. С. 45-55.
- 33. Геологическая информативность обломочного золота в современных речных отложениях (на примере Предуральского краевого прогиба)/ В. И. Силаев, А. Ф. Хазов, В. А.

Жариков, М. Ю. Сокерин, В. Н. Филиппов // Уральский геологический журнал, 2013. № 6. С. 21-32.

- Типоморфизм самородного золота из кайнозойских отложений/ А. В. Терехов, А. В. Молчанов, В. В. Шатов, Е. И. Хорохорина, О. Л. Соловьев // Региональная геология и металлогения. 2016. № 65. С. 63-103.
- 35. Щербаков Ю. Г. Геохимическая эволюция и рудные формации // Проблемы эндогенного рудообразования и металлогении. Новосибирск: Наука, 1976. С. 217–229.
- 36. Силаев В. И. Парадигма глобальной геохимической дифференциации и перспективы минералого-геохимических исследований рудоносности // Геохимия рудообразующих систем и металлогенический анализ. Новосибирск: Наука, 1989. С. 180–190.
- 37. Силаев В. И. Зональность рудных месторождений и полей как отражение геохимической дифференциации. Сыктывкар, 1987. 23 с.
- 38. Силаев В.И., Яковлева О.А., Ивановский В.С. Генетико-информационное значение пробы аллювиального золота // Доклады АН СССР. 1987. Т. 294. № 6. С. 1432–1435.
- 39. Макеев А. Б., Дудар В. А. Самородки золота россыпных проявлений Приполярного Урала и Среднего Тимана // Вестник Института геологии Коми НЦ УрО РАН, 2003. № 11. С. 15–18.

References

- 1. Posukhova T.V. Zolotyye kladovyye prirody [Golden treasures of nature] // Soros Educational J. 2001. Vol. 7. No. 10. P. 67-74.
- Samusikov V.P. Samorodki zolotaya zagadka prirody [Nuggets – the golden mystery of nature] // Hypotheses and facts. 2007. No. 1. P. 59-64.
- Sobolevsky V.I. Blagorodnyye metally. Zoloto [Noble metals. Gold]. Moscow: Znaniya, 1970. 47 p.
- 4. *Al'bov M.N.* Vtorichnaya zonal'nost' zolotorudnykh mestorozhdeniy Urala [Secondary zoning of gold ore deposits in the Urals]. Moscow: Gostekhizdat, 1960. 216 p.
- 5. Al'bov M.N. Zakonomernosti raspredeleniya zolota v zone gipergeneza zhil'nykh mestorozhdeniy [Regularities of gold distribution in the zone of hypergenesis of vein deposits] // Mineralogy of the hypergenesis zone. Moscow: Nauka, 1980. P. 15-19.
- Povedeniye zolota v zone okisleniya zolotosul'fidnykh mestorozhdeniy [Gold behavior in the oxidation zone of gold-sulfide deposits] / V.M. Kreiter, V.V. Volynsky, I.S. Volynsky, A.N. Krestovnikov, V.V. Kuvichinsky. Moscow: Gosgeoltekhizdat, 1958. 268 p.
- 7. Murzin V.V., Grigoryev N.A., Mentser E.I. O mekhanizme ukrupneniya chastits zolota v gipergennom oreole ostatochnogo tipa [About the mechanism of enlargement of gold particles in a hypergenic halo of residual type] //

Doklady Earth Sciences. 1985. Vol. 284. No. 4-5. P. 956-959.

- Novgorodova M.I., Generalov M.E., Trubkin N.V. Novoye zoloto v korakh vyvetrivaniya Yuzhnogo Urala (Rossiya) [New gold in the weathering crusts of the Southern Urals (Russia)] // Geology of ore deposits. 1995. Vol. 37. No. 1. P. 40-53.
- Polyakova T.P., Ridzyunskaya N.M., Nikolaeva L.A. Zoloto v korakh vyvetrivaniya Urala [Gold in the weathering crusts of the Urals] // Ores and Metals. 1995. No. 1. P. 25-40.
- Ridzyunskaya N.M, Polyakova T.P, Ladygin A.I. Zolotonosnyye kory vyvetrivaniya Pripolyarnogo Urala [Gold-bearing weathering crusts of the Subpolar Urals] // Ores and Metals. 1996. No. 4. P. 38-45.
- Roslyakov N.A. Geokhimiya zolota v zone gipergeneza [Geochemistry of gold in the hypergenesis zone]. Novosibirsk: Nauka, 1981. 238 p.
- 12. Savva N.E., Palyanov G.A., Kolova E.E. Mineraly zolota i serebra v zone vtorichnogo sul'fidnogo obogashcheniya (rudoproyavleniye Krutoye, Severo-Vostok Rossii) [Minerals of gold and silver in the zone of secondary sulfide enrichment (Krutoye ore occurrence, North-East of Russia)] // Bull. of the North-Eastern Sci. Centre, Far Eastern Branch, RAS, 2010. P. 33-45.
- Khazov A.F. Mezo-kaynozoyskiye kory vyvetrivaniya na ubogo zolotonosnykh substratakh (Pripolyarnyy Ural) [Meso-Cenozoic weathering crust on poor gold-bearing substrates (Subpolar Urals)] // Bull. of the Inst. of Geology, Komi Sci. Centre, Ural Branch, RAS. 2001. No. 6. P. 19-20.
- Khazov A.F., Petrovsky D.V. Geneticheskiye osobennosti gipergenno-modifitsirovannogo zolota v korakh vyvetrivaniya [Genetic features of hypergenically modified gold in weathering crusts] // Doklady Earth Sciences. 2007. Vol. 415. No. 5. P. 533-537.
- Bowell R. J. Suppergene gold mineralogy at Ashanti Ghana: implications for the Supergene behavior of gold // Miner. Mag. 1992. Vol. 56. No. 4. P. 545-560.
- Man A.W. Mobility of Gold and Silver in Lateritic Weathering Profiles: Some Observations from Western Australia // Econ. Geol., 1984. Vol. 79. No. 1. P. 38-49.
- 17. Klepikov V.N. Krupneyshiye samorodki zolota iz allyuvial'nykh rossypey Severo-Vostoka [The largest nuggets of gold from alluvial placers of the North-East] // Kolyma. 1992. No. 10-11. P. 14-20.
- 18. Petrovskaya N.V. Samorodnoye zoloto [Native gold]. Moscow: Nauka, 1973. 348 p.
- 19. Petrovskaya N.V. Zolotyye samorodki [Golden nuggets]. Moscow: Nauka, 1993. 191 p.
- 20. Silaev V.I., Khazov A.F., Chaikovsky I.I., Filippov V.N. «Zhivaya» zolotonosnaya rossyp' na reke Bol'shoy Shaldinke ["Live" gold placer on the Bolshaya Shaldinka river] // Bull. of the Inst. of Geology, Komi Sci. Centre, Ural Branch, RAS, 2005. No. 9. P. 4–9.

- Rukovich A.V. Istoriya geologicheskogo Tsentral'nogo-Aldanskogo rudnogo rayona (TsARR) [History of geological development of the Central-Aldan ore region (CAOR)] // Advances in current Natural Sciences. 2016. No. 11. P. 186-190.
- Boitsov V.E., Pilipenko G.N., Dorozhkina L.A. Zolotorudnyye i zoloto-uranovyye mestorozhdeniya Tsentral'nogo Aldana [Gold ore and gold-uranium deposits of Central Aldan]. Vol.
 Strategic types of ore raw materials. Moscow: Inst. of Geology of Ore Deposits, RAS, 2006. P. 215-240.
- Boitsov V.E., Pilipenko G.N., Dorozhkina L.A. Novyy unikal'nyy tip zoloto-uranovykh (branneritovykh) rud El'konskogo rudnogo uzla (Tsentral'nyy Aldan) [A new unique type of gold-uranium (brannerite) ores of the Elkon ore cluster (Central Aldan)] // RMSDPI 2006-2-6-0. P. 17-19.
- 24. Borisenko A.S., Naumov E.A., Obolensky A.A. Tipy zoloto-rtutnykh mestorozhdeniy i usloviya ikh obrazovaniya [Types of gold-mercury deposits and conditions of their formation] // Geology and Geophysics. 2006. Vol. 47. No. 3. P. 342-354.
- 25. Kokin A.V. Zolotorudnoye proyavleniye Oderzhimyy perspektivnyy ob"yekt dlya promyshlennogo osvoyeniya zolota, vismuta i tellura [Gold ore occurrence Oderzhimy – promising object for the industrial development of gold, bismuth and tellurium] // Geology and mineral resources of the North-East of Russia: Materials of the VII All-Russian sci.-pract. conf. Vol. 1. Yakutsk, 2017. P. 90-95.
- Kokin A.V. Otsenka perspektivnost' rudnykh ob"yektov [Assessment of the prospects of ore objects]. Rostov-on-Don: RostIzdat, 2005. 347 p.
- 27. Kokin A.V. Termobarometriya samorodnogo zolota i yego mineralov-sputnikov iz mestorozhdeniy Yugo-Vostochnoy Yakutii [Thermobarometry of native gold and its satellite minerals from the deposits of South-Eastern Yakutia] // Geology and Geophysics. 1981. No. 5. P. 74-79.
- Fluid Phases in Carbonado and their Genetic Significance / V.A. Petrovsky, V.I. Silaev, A.E. Sukharev, S.N. Shanina, M. Martins, J. Karfunkel // Geochemistry International. 2008. Vol. 46. No. 7. P. 693-710.
- Petrovsky D.V., Silaev V.I., Zharkov V.A., Petrovsky V.A. Native gold and companion Minerals in the Cenozoic Sediments of the Ural Foredeep // Geology of Ore Deposits, 2012. Vol. 54. No. 6. P. 474-486.
- 30. Mineralno-fazovii paragenezis v eksplozivnyh produktah sovremennyh izverzhenii vulkanov Kamchatki i Kuril. Chast I. Almazy, uglerodnie fazy, kondensirovannie organoidy [Mineral-phase paragenesis in explosive ejecta discharged by recent eruptions in Kamchatka and the Kuril Islands. Part I. Diamonds, carbonaceous phases, and condensed organoids] / V.I.Silaev, G.A.Karpov, L.P.Anikin, E.A. Vasilyev, L.P.Vergasova, I.V.Smoleva // Volcanology and seismology. 2019. No. 5. P. 54-67.

- Litvinenko I.S., Shilina P.A. Gipergennyye novoobrazovaniya zolota iz rossypnykh mestorozhdeniy Nizhne-Myakitskogo rudno-rossypnogo polya, Severo-Vostok Rossii [Hypergenic new formations of gold from placer deposits of the Nizhne-Myakitsky ore-placer field, North-East of Russia] // Ores and Metals. 2017. No. 1. P. 75-90.
- 32. Maiorova T.P. Mineralogiya i tipormorfizm zolota kaynozoyskikh rossypey severa Urala i Timana [Mineralogy and typormorphism of gold from Cenozoic placers in the north of the Urals and Timan] // Ores and Metals. 1996. No. 4. P. 45-55.
- 33. Geologicheskaya informativnost' oblomochnogo zolota v sovremennykh rechnykh otlozheniyakh (na primere Predural'skogo krayevogo progiba) [Geological informativeness of clastic gold in modern river sediments (on the example of the Cis-Ural edge deflection)] / V.I. Silaev, A.F. Khazov, V.A. Zharikov, M.Yu. Sokerin, V.N. Filippov // Ural Geol. J., 2013. No. 6. P. 21-32.
- 34. Tipomorfizm samorodnogo zolota iz kaynozoyskikh otlozheniy [Typomorphism of native gold from Cenozoic sediments] / A.V. Terekhov, A.V.Molchanov, V.V.Shatov, E.I. Khorokhorina, O.L.Solovyev // Regional Geology and Metallogeny. 2016. No. 65. P. 63-103.
- 35. Shcherbakov Yu.G. Geokhimicheskaya evolyutsiya i rudnyye formatsii [Geochemical evo-

lution and ore formations] // Problems of endogenous ore formation and metallogeny. Novosibirsk: Nauka, 1976. P. 217-229.

- 36. Silaev V.I. Paradigma global'noy geokhimicheskoy differentsiatsii i perspektivy mineralogo-geokhimicheskikh issledovaniy rudonosnosti [The paradigm of global geochemical differentiation and prospects for mineralogical and geochemical studies of ore content] // Geochemistry of ore-forming systems and metallogenic analysis. Novosibirsk: Nauka, 1989. P. 180-190.
- 37. Silaev V.I. Zonal'nost' rudnykh mestorozhdeniy i poley kak otrazheniye geokhimicheskoy differentsiatsii [Zoning of ore deposits and fields as a reflection of geochemical differentiation]. Syktyvkar, 1987. 23 p.
- Silaev V.I., Yakovleva O.A., Ivanovsky V.S. Genetiko-informatsionnoye znacheniye proby allyuvial'nogo zolota [Genetic and informational value of sample alluvial gold] // Doklady Earth Sciences. 1987. Vol. 294. No. 6. P. 1432-1435.
- Makeev A.B., Dudar V.A. Samorodki zolota rossypnykh proyavleniy Pripolyarnogo Urala i Srednego Timana [Golden nuggets of placer occurrences of the Subpolar Urals and Middle Timan] // Bull. of Inst. of Geology, Komi Sci. Centre, Ural Branch, RAS. 2003. No. 11. P. 15-18.
 - Статья поступила в редакцию 10.09.2020