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Аннотация

Получена явная формула для точного вычисления
гафниана трехпараметрических теплицевых мат-
риц специального вида за полиномиальное время.
Дана асимптотическая оценка гафниана указанно-
го типа матриц. Отдельно рассмотрен случай це-
лочисленных неотрицательных параметров, когда
вычисление гафниана равносильно перечислению
совершенных паросочетаний дуговых и хордовых
диаграмм.

Ключевые слова:
гафниан, теплицева матрица, совершенное паро-
сочетание, дуговая диаграмма, хордовая диаграм-
ма, многочлен Бесселя
Abstract

We obtain an explicit formula for exact calculating
the hafnian of 3-parameter Toeplitz matrices of a
special type in polynomial time. We also give an
asymptotic estimate for the hafnian of this type of
matrices. Separately, we consider a case of non-neg-
ative integer parameters, when calculating the haf-
nian is equivalent to enumerating perfect matchings
of arc and chord diagrams.

Keywords:
hafnian, Toeplitz matrix, perfect matching, arc dia-
gram, chord diagram, Bessel polynomial

Introduction

Let A = (aij) be a symmetric matrix of even or-
der n over a commutative associative ring. The hafnian
of A is defined as

Hf(A) =
∑

(i1i2|...|in−1in)

ai1i2 · · · ain−1in ,

where the sum runs over all partitions of the set
{1, 2, . . . , n} into disjoint pairs (i1i2), . . . , (in−1in) up
to the order of pairs, and the order of elements in each
pair. So, if n = 4 then Hf(A) = a12a34 + a13a24 +
a14a23. The hafnian of the empty matrix is taken to be
1.

Recall that a matrix is called Toeplitz if all its diag-
onals parallel to the main diagonal consist of the same
elements. A symmetric Toeplitz matrix is uniquely deter-
mined by its first row. Let a, b, c be real or complex num-
bers. We denote by Tm(a, b, c) the symmetric Toeplitz
matrix of order 2m with zero main diagonal whose first
row has the form (0, a, b, b, . . . , b, c) or (0, a) if m = 1.
For example (dots denote zeros),

T3(a, b, c) =


· a b b b c
a · a b b b
b a · a b b
b b a · a b
b b b a · b
c b b b a ·

 .

In the first part of our work, we obtain an explicit
formula for exact calculating the hafnian of such matri-
ces. Using this formula, we also give an asymptotic esti-
mate. In the second part, we consider sequences of val-
ues Hf(Tm(a, b, c)) with respect to m for non-negative
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integers a, b, c. Such sequences can be interpreted in
the language of graph theory as follows. It is easy to see
that if M is the adjacency matrix of an unordered multi-
graph with even number of vertices, then Hf(M) equals
the total number of perfect matchings of the multigraph.
We denote by Gm(a, b, c) the multigraph with 2m ver-
tices whose adjacency matrix is Tm(a, b, c). It is con-
venient to represent such a multigraph in the form of an
arc or chord diagram. An arc diagram is a graph presen-
tation method where all the vertices are located along
a line in the plane, while all edges are drawn as arcs.
The vertices of a chord diagram are located on a circle
and edges are chords of the circle. However, if a pair of
vertices of a chord diagram is joined by several edges,
then to distinguish them in a figure, we will draw them
not in the form of segments, but also in the form of arcs.
By construction, the vertices 1 and 2m of the diagram
Gm(a, b, c) are joined by c edges, vertices with numbers
differing by one are joined by a edges, and all other pairs
of vertices are joined by b edges (see Figure 1).

1 2 3 4 5 6

(a)

1

2

34

5

6

(b)

Fig. 1. Arc (a) and chord (b) diagrams G3(2, 1, 0).
Рис. 1. Дуговая (a) и хордовая (b) диаграммы
G3(2, 1, 0).

Thus, in the second part of our work, we consider
sequences of numbers of perfect matchings of the multi-
graphs Gm(a, b, c) for some values of a, b, c.

Note that inmany papers (see, for example, [1,2]),
chord diagrams are understood to be perfect matchings
of chord diagrams in our terminology, and perfect match-
ings of arc diagrams are called linear chord diagrams. In
the same papers, one can find references to extensive
applications of these structures.

1. The hafnian of three-parameter Toeplitz matrices

Let Qk,n denote the set of all unordered k-ele-
ment subsets of the set {1, 2, . . . , n}. Let A be a matrix
of order n and α ∈ Qk,n. We denote the submatrix of
A formed by the rows and columns of A with numbers
in α by A[α], and the submatrix of A formed from A by
removing the rows and columns with numbers in α by
A{α}. The following property proved in [3]:
Proposition 1. LetA,B be symmetric matrices of even

order n. Then

Hf(A+B) =

n/2∑
k=0

∑
α∈Q2k,n

Hf(A[α])Hf(B{α}). (1)

Consider the matrix Tm(a, b, c), m ≥ 2. For
brevity, we denote it now by Am:

Am =



0 a b · · · b c

a
. . . . . . . . . b

b
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . b

b
. . . . . . . . . a

c b · · · b a 0


︸ ︷︷ ︸

2m

, m ≥ 2.

This matrix can be represented as the sum of the follow-
ing two matrices:

Bm =



0 a b · · · · · · b

a
. . . . . . . . .

...

b
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . b
...

. . . . . . . . . a
b · · · · · · b a 0


,

Cm =



0 · · · · · · · · · 0 c− b
...

. . . 0
...

. . .
...

...
. . .

...

0
. . .

...
c− b 0 · · · · · · · · · 0


.

It has shown in [4], that if we put 00 = 1 then the hafnian
of Bm can be calculated by the following formula:

Hf(Bm) =
m∑

k=0

(a− b)m−kbk
(m+ k)!

k!(m− k)!2k
. (2)

In other words, the value of the hafnian of such a matrix
is equal to the value of the polynomial

pm(x, y) =
m∑

k=0

(m+ k)!

k!(m− k)!

(x
2

)k
ym−k

in two variables x, y at x = b and y = a − b. Note
that for y = 1 this polynomial coincides with the Bessel
polynomial of degree m [5]. Using (1), we find

Hf(Am) =
m∑

k=0

∑
α∈Q2k,2m

Hf(Bm[α])Hf(Cm{α}).

If α = (1, 2, . . . , 2m), then Cm{α} is the empty ma-
trix and Hf(Cm{α}) = 1. If α = (2, 3, . . . , 2m − 1),
then Hf(Cm{α}) = Hf(Cm[1, 2m]) = c− b. In all other
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cases, Hf(Cm{α}) = 0. It follows that

Hf(Am) = Hf(Bm) + (c− b)Hf(Bm−1) =

=
m∑

k=0

(a− b)m−kbk
(m+ k)!

k!(m− k)!2k
+

+ (c− b)
m−1∑
l=0

(a− b)m−l−1bl
(m+ l − 1)!

l!(m− l − 1)!2l
. (3)

Performing simple transformations, we finally obtain

Hf(Am) =
(2m)!

m!

(
b

2

)m

+

+
m−1∑
k=0

(a− b)m−k−1

k!

(
b

2

)k (
(a− b)

(m+ k)!

(m− k)!
+

+(c− b)
(m+ k − 1)!

(m− k − 1)!

)
. (4)

If a ̸= b, then the first summand can also be entered
under the sum sign:

Hf(Am) =
m∑

k=0

(a− b)m−k−1

k!

(
b

2

)k

×

×
(
(m+ k − 1)!

(m− k)!

(
m(a+ c− 2b) + k(a− c)

))
.

(5)

Remark 1. Using (4) and (5), one can computeHf(Am)
in time O(m).

The obtained formulas allow us to give an asymp-
totic estimate for Hf(Am).
Proposition 2. If b = 0, then Hf(Am) = am−1(a+ c).
If b ̸= 0, then

Hf(Am) ∼ (2m)!

m!

(
b

2

)m

e(a−b)/b, m → ∞.

Proof. If b = 0, then nonzero summands in (3) corre-
spond only to the values k = 0 and l = 0. Therefore, in
this case Hf(Am) = am−1(a+ c).

In the case b ̸= 0, the proof is similar, with slight
modifications, to the proof of the asymptotic formula for
Bessel polynomials in [6]. We introduce for convenience
the notation

fm(x, y) =
(2m)!

m!

(x
2

)m
ey/x.

Our task is to show that Hf(Am) ∼ fm(b, a − b) as
m → ∞. In the course of the proof, for the sake of con-
venience, we also denote Hf(Bm) by Sm. If we replace
k by m − k under the summation sign in (2), and then
take out the first summand as a common factor, we get:

Sm =
m∑

k=0

(a− b)kbm−k (2m− k)!

k!(m− k)!2m−k
=

=
bm(2m)!

m!2m

m∑
k=0

(a− b)k2km!(2m− k)!

bkk!(2m)!(m− k)!
.

By induction on k, it can be proved that

0 <
1

k!

(
1− 2km!(2m− k)!

(2m)!(m− k)!

)
≤

≤ 1

2(k − 2)!(2m− 1)
, 2 ≤ k ≤ m.

Hence,∣∣∣∣∣Sm − bm(2m)!

m!2m

m∑
k=0

(a− b)k

bkk!

∣∣∣∣∣ ≤
≤ |b|m(2m)!

m!2m

m∑
k=2

|a− b|k

|b|kk!

(
1− 2km!(2m− k)!

(2m)!(m− k)!

)
≤

≤ |b|m(2m)!

m!2m+1(2m− 1)

m∑
k=2

|a− b|k

|b|k(k − 2)!
≤

≤ |b|m−2(2m)!|a− b|2

m!2m+1(2m− 1)
e|a−b|/|b|.

Similarly,

Sm−1 =
m−1∑
k=0

(a− b)k
bm−k−1(2m− k − 2)!

k!(m− k − 1)!2m−k−1
=

=
bm(2m)!

m!2m

m−1∑
k=0

(a− b)k2k+1m!(2m− k − 2)!

bk+1k!(2m)!(m− k − 1)!
=

=
bm(2m)!

m!2m

m−1∑
k=0

(
(a− b)k

bk+1k!(2m− k − 1)

k∏
i=1

2m− 2i

2m− i

)
.

It follows that

|Sm−1| ≤
|b|m−1(2m)!

m!2mm

m−1∑
k=0

|a− b|k

|b|kk!
≤

≤ |b|m−1(2m)!

m!2mm
e|a−b|/|b|.

Now we can write the following chain of inequali-
ties:

|Hf(Am)− fm(b, a− b)| =

=

∣∣∣∣∣Sm + (c− b)Sm−1 −
bm(2m)!

m!2m

∞∑
k=0

(a− b)k

bkk!

∣∣∣∣∣ ≤
≤

∣∣∣∣∣Sm − bm(2m)!

m!2m

m∑
k=0

(a− b)k

bkk!

∣∣∣∣∣+
+ |c− b||Sm−1|+

|b|m(2m)!

m!2m

∞∑
k=m+1

|a− b|k

|b|kk!
≤

≤ fm(|b|, |a− b|)
(

|a− b|2

2(2m− 1)|b|2
+

|c− b|
m|b|

+ 1

)
.
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Hence,∣∣∣∣ Hf(Am)

fm(b, a− b)
− 1

∣∣∣∣ = |Hf(An)− fm(b, a− b)|
|fm(b, a− b)|

≤

≤ fm(|b|, |a− b|)
|fm(b, a− b)|

(
|a− b|2

2(2m− 1)|b|2
+

|c− b|
m|b|

+ 1

)
.

(6)

The ratio fm(|b|, |a − b|)/|fm(b, a − b)| is a constant,
and the expression in brackets approaches zero as m
increases. This completes the proof.

Remark 2. The inequality (6) guarantees fast conver-
gence only for small values of the ratios |c − b|/|b| and
|a− b|/|b|.
Remark 3. The value of the parameter c affects only the
convergence rate, but does not affect the form of the
asymptotic behavior of Hf(Am). This is not surprising,
since the parameter c, in contrast to the parameters a
and b, corresponds to only two elements of a matrix.

For non-negative integers a, b, c, formulas ob-
tained in this section allow us to calculate exactly and
approximately the values of the number of perfect match-
ings of arc and chord diagrams Gm(a, b, c). Further we
will consider some concrete examples.

2. Perfect matchings of some diagrams Gm(a, b, c)

2.1. The arc diagram Gm(2, 1, 1)

Let us consider the arc diagram Gm(2, 1, 1).
Neighboring vertices are joined in it by two arcs (we
call them conditionally «upper» and «lower» arc), and
any other pair of vertices is joined by one arc (see Fig.
2). Let am denote the number of perfect matchings of
Gm(2, 1, 1). From (5) we get

am = Hf(Tm(2, 1, 1)) =
m∑

k=0

1

k!2k
(m+ k)!

(m− k)!
. (7)

Applying (7) for consecutive m, we get the sequence
A001515 from [7]. Thus, we have a new interpretation
of this sequence.

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Fig. 2. The arc diagram G2(2, 1, 1) and its perfect
matchings.
Рис. 2. Дуговая диаграмма G2(2, 1, 1) и ее совершен-
ные паросочетания.

By Proposition 2

am ∼ (2m)!

m!2m
e. (8)

If we remove «lower» arcs in the diagram Gm(2, 1, 1),
then we get the complete graph K2m. The number of
perfect matchings of K2m equals (2m)!/m!2m. So, it
follows from (8) that adding «lower» arcs joining neigh-
boring vertices to the arc diagram of the complete graph
increases the number of perfect matchings by approxi-
mately e times.

It is known from the description of the sequence
A001515 in [7] that itsm-th term is equal to the number
of partitions of the sets {1, 2, . . . , k}, m ≤ k ≤ 2m,
into m non-empty blocks with no more than two ele-
ments per block. For example, if m = 2, then we get
partitions: {1, 2}, {13, 2}, {13, 24}, {1, 23}, {14, 23},
{12, 3}, {12, 34}— 7 in total. We establish now the cor-
respondence between the given interpretation of this se-
quence and its interpretation through the number of per-
fect matchings of the arc diagram Gm(2, 1, 1) obtained
above. As an example, Figure 2 illustrates the arc dia-
gram G2(2, 1, 1) and all its perfect matchings.

We assign a partition to each perfect matching
by the following rule. If two vertices are joined by an
«upper» arc, then we put down their numbers to the
same block. If two neighboring vertices are joined by an
«lower» arc, then we «glue» them into one, renumber
vertices of the obtained graph from left to right and put
down the number of a single vertex to a separate block
(see Fig. 3). Carrying out this procedure in the opposite
direction, we will uniquely restore the perfect matching
of the diagram for a given partition. The given scheme
obviously works for an arbitrary m.

2.2. The chord diagram Gm(2, 1, 2)

Consider the chord diagram Gm(2, 1, 2). Neigh-
boring vertices are joined in it by two chords, and any
other pair of vertices is joined by one chord (see Fig. 4).

Let bm denote the number of perfect matchings of
Gm(2, 1, 2). It follows from the above that

bm = Hf(Tm(2, 1, 2)) = m
m∑

k=0

1

k!2k−1

(m+ k − 1)!

(m− k)!
.

(9)
By Proposition 2

bm ∼ (2m)!

m!2m
e.

Setting b1 = 2 and using (9) for consecutive m ≥ 2,
we get the sequence A336400 from [7]. This sequence
is also presented in the second column of Table 1. It
is easy to see, that sequences (am) and (bm) are con-
nected to each other by the following relation:

bm = am + am−1. (10)

Indeed, the diagram Gm(2, 1, 2) differs from
Gm(2, 1, 1) by only one edge joining the vertices 1 and
2m. For Gm(2, 1, 2), the number of perfect matchings,
in which vertices 1 and 2m are joined by an edge, equals
am−1. Hence, bm is greater than am by am−1.

8
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1 2 3 4
{14, 23}

1 2 3 4
{13, 24}

1 2 3 4 1 2
{1, 2}

1 2 3 4
{12, 34}

1 2 3 4 1 2 3
{13, 2}

1 2 3 4 1 2 3
{12, 3}

1 2 3 4 1 2 3
{1, 23}

Fig. 3. The correspondence of two interpretations of the sequence A001515.
Рис. 3. Соответствие двух интерпретаций последовательности A001515.

1

23

4 1

23

4

1

23

4 1

23

4

1

23

4 1

23

4

1

23

4 1

23

4

1

23

4 1

23

4

Fig. 4. The chord diagram G2(2, 1, 2) and its perfect
matchings.
Рис. 4. Хордовая диаграмма G2(2, 1, 2) и ее совершен-
ные паросочетания.

It is known that the sequence (am) satisfies the
following recurrence relation:

am = (2m−1)am−1+am−2, a1 = 2, a0 = 1. (11)

From the equalities (10) and (11), we can derive the fol-
lowing recurrence relation for terms bm:

bm+1 = 2mbm + (2m− 2)bm−1 + bm−2, m ≥ 4.

and

bm+1 =
(4m2 − 3)bm + (2m+ 1)bm−1

2m− 1
, m ≥ 3.

2.3. The arc diagram Gm(2, 1, 0)

Let us consider the arc diagram Gm(2, 1, 0).
Neighboring vertices are joined in it by two arcs, the ver-
tices 1 and 2m are not adjacent if m ≥ 2, and all other
pairs of vertices are joined by one arc (see Fig. 5).

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Fig. 5. The arc diagram G2(2, 1, 0) and its perfect
matchings.
Рис. 5. Дуговая диграмма G2(2, 1, 0) и ее совершен-
ные паросочетания.

Let cm denote the number of perfect matchings of
Gm(2, 1, 0). From (5) we get

cm = Hf(T2m(2, 1, 0)) =

=
m∑

k=1

1

(k − 1)!2k−1

(m+ k − 1)!

(m− k)!
. (12)

By Proposition 2

cm ∼ (2m)!

m!2m
e.

9
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Setting c1 = 2 and using (12) for consecutivem ≥ 2, we
get the sequence presented in the third column of Table
1.

As in the case of (am), the sequence (cm) can
be interpreted through partitions of finite sets of natural
numbers into blocks. Namely, cm is equal to the num-
ber of partitions of sets {1, 2, . . . , k}, m ≤ k ≤ 2m,
intom non-empty blocks so that there are no more than
two elements in each block and there is no block con-
taining 1 and k simultaneously. For example, if m = 2
then we get partitions: {1, 2}, {13, 24}, {1, 23}, {12, 3},
{12, 34} — 5 in total.

It is easy to see that sequences (am) and (cm)
are connected to each other by the following relation:

cm = am − am−1. (13)

Indeed, the diagram Gm(2, 1, 1) differs from
Gm(2, 1, 0) by only one edge joining the vertices 1 and
2m. For Gm(2, 1, 1), the number of perfect matchings,
in which vertices 1 and 2m are joined by an edge, equals
am−1. Hence, am is greater than cm by am−1. From
the equalities (11) and (13), one can derive the following
recurrence relation for terms cm:

cm+1 = (2m+2)cm−(2m−4)cm−1−cm−2, m ≥ 4.

and

cm+1 =
(4m2 + 1)cm + (2m+ 1)cm−1

2m− 1
, m ≥ 3.

Starting from m = 2, cm coincides with the
(m − 1)-th term of the sequence A144498 from [7].
Thus, one can say that we get a new interpretation of
A144498.

2.4. The arc diagram Gm(1, 2, 2)

Let us consider the arc diagram Gm(1, 2, 2).
Neighboring vertices are joined in it by one arc, and
any other pair of vertices is joined by two arcs (see Fig.
6). Let um denote the number of perfect matchings of
Gm(1, 2, 2). From (5) we derive that

um = Hf(T2m(1, 2, 2)) =
m∑

k=0

(−1)m−k

k!

(m+ k)!

(m− k)!
.

(14)
Setting u1 = 1 and using (14) for consecutivem, we get
the sequence presented in the first column of Table 2. El-
ements of this sequence coincide in absolute value with
the corresponding elements of the sequence A002119
from [7].

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Fig. 6. The arc diagram G2(1, 2, 2) and its perfect
matchings.
Рис. 6. Дуговая диаграмма G2(1, 2, 2) и ее совершен-
ные паросочетания.

By Proposition 2

um ∼ (2m)!√
em!

. (15)

If one joins in the diagram Gm(1, 2, 2) neighboring ver-
tices by additional «lower» arcs, then we obtain the di-
agram Gm(2, 2, 2). It is nothing more than a com-
plete multigraph, each pair of vertices of which is joined
by two edges. It is not difficult to calculate that the
number of perfect matchings of such a graph equals
(2m)!/m!. From (15) it follows that, by appending addi-
tional «lower» arcs joining neighboring vertices to the di-
agramGm(1, 2, 2), we get the number of perfect match-
ings increased by approximately

√
e times.

Now we derive a recurrence for the sequence
(um). For Gm(1, 2, 2), consider perfect matchings, in
which the vertex 2m is joined by an arc with the vertex
2m − 1. It is obvious that the number of such perfect
matchings equals um−1. Consider a perfect matching,
in which the vertex 2m is joined by an «upper» arc with
the vertex 2m−2 (see Fig. 7(a)). The remaining 2m−2
vertices can be paired in at least um−1 ways. But the
vertices 2m − 1 and 2m − 3 are considered here as
neighboring, and therefore they assume only one vari-
ant of the connection (by an «upper» arc), although if
we consider the diagram G2m(1, 2, 2) in general, this
vertices can be joined by two different arcs. Thus, one
must also take into account perfect matchings, in which
the vertices 2m− 1 and 2m− 3 are joined by a «lower»
arc (see Fig. 7(b)). The number of such matchings is
obviously um−2.

2m-3 2m-2 2m-1 2m

(a)

2m-4

2m-3

2m-2

2m-1

2m

(b)

Fig. 7. A derivation of a recurrence for (um).
Рис. 7. Вывод рекуррентного соотношения для (um).
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Table 1
The number of perfect matchings of multigraphs Gm(a, b, c)

Таблица 1
Число совершенных паросочетаний мультиграфа Gm(a, b, c)

m Gm(2, 1, 1) Gm(2, 1, 2) Gm(2, 1, 0)
1 2 2 2
2 7 9 5
3 37 44 30
4 266 303 229
5 2431 2697 2165
6 27007 29438 24576
7 353522 380529 326515
8 5329837 5683359 4976315
9 90960751 96290588 85630914

10 1733584106 1824544857 1642623355
11 36496226977 38229811083 34762642871
12 841146804577 877643031554 804650577600
13 21065166341402 21906313145979 20224019536825
14 569600638022431 590665804363833 548535471681029
15 16539483668991901 17109084307014332 15969883030969470
16 513293594376771362 529833078045763263 496754110707779461
17 16955228098102446847 17468521692479218209 16441934503725675485
18 593946277027962411007 610901505126064857854 576991048929859964160
19 21992967478132711654106 22586913755160674065113 21399021201104749243099
20 858319677924203716921141 880312645402336428575247 836326710446071005267035

Table 2
The number of perfect matchings of multigraphs Gm(a, b, c)

Таблица 2
Число совершенных паросочетаний мультиграфа Gm(a, b, c)

m Gm(1, 2, 2) Gm(1, 2, 1) Gm(1, 2, 0)
1 1 1 1
2 7 6 5
3 71 64 57
4 1001 930 859
5 18089 17088 16087
6 398959 380870 362781
7 10391023 9992064 9593105
8 312129649 301738626 291347603
9 10622799089 10310669440 9998539791

10 403978495031 393355695942 382732896853
11 16977719590391 16573741095360 16169762600329
12 781379079653017 764401360062626 747423640472235
13 39085931702241241 38304552622588224 37523173542935207
14 2111421691000680031 2072335759298438790 2033249827596197549
15 122501544009741683039 120390122318741003008 118278700627740322977
16 7597207150294985028449 7474705606285243345410 7352204062275501662371
17 501538173463478753560673 493940966313183768532224 486343759162888783503775
18 35115269349593807734275559 34613731176130328980714886 34112193002666850227154213
19 2599031470043405251089952039 2563916200693811443355676480 2528800931344217635621400921
20 202759569932735203392750534601 200160538462691798141660582562 197561506992648392890570630523
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The same is true for perfect matchings, in which
the vertex 2m is joined with the vertex 2m − 2 by a
«lower» arc. Thus, the number of perfect matchings, in
which vertices 2m and 2m − 2 are joined by an arc,
equals 2(um−1 + um−2). Continuing to reason in a
similar way and summing over all possible variants of
arcs incident to the vertex 2m, we obtain

um + um−1 = (4m− 2)um−1+

+ (4m− 6)um−2 + · · ·+ 10u2 + 6.

On the other hand, applying the given formula to um−1,
we arrive at the equality:

um−1 + um−2 = (4m− 6)um−2+

+ (4m− 10)um−3 + · · ·+ 10u2 + 6.

Substituting this expression into the previous one, we
finally obtain

um = (4m−2)um−1+um−2, u1 = 1, u0 = 1. (16)

2.5. The chord diagram Gm(1, 2, 1)

Let us consider the chord diagram Gm(1, 2, 1).
Neighboring vertices are joined in it by one chord, and
any other pair of vertices is joined by two chords (see
Fig. 8).

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

Fig. 8. The chord diagram G2(1, 2, 1) and its perfect
matchings.
Рис. 8. Хордовая диаграмма G2(1, 2, 1) и ее совершен-
ные паросочетания.

Let vm denote the number of perfect matchings
of Gm(1, 2, 1). From (5) we get

vm = Hf(T2m(1, 2, 1)) =

= 2m
m∑

k=0

(−1)m−k

k!

(m+ k − 1)!

(m− k)!
. (17)

By Proposition 2

vm ∼ (2m)!√
em!

.

Taking v1 = 1 and using (17) for consecutive m ≥ 2,
we get the sequence A336114 from [7]. This sequence
is also presented in the second column of Table 2.

It is easy to see that sequences (um) and (vm)
are connected by the following relation:

vm = um − um−1. (18)

Indeed, the diagramGm(1, 2, 2) differs fromGm(1, 2, 1)
only by one edge joining the vertices 1 and 2m.
Hence, um is greater than vm by the number of perfect
matchings ofGm(1, 2, 2), in which the vertices 1 and 2m
are joined by an edge, i.e., by um−1. From equalities
(16) and (18), one can derive the following recurrence
relations for terms vm:

vm+1 = (4m+3)vm−(4m−7)vm−1−vm−2, m ≥ 4.

and

vm+1 =
8m2vm + (2m+ 1)vm−1

2m− 1
, m ≥ 3.

2.6. The arc diagram Gm(1, 2, 0)
Let us consider the arc diagram Gm(1, 2, 0).

Neighboring vertices are joined in it by one arc, the
vertices 1 and 2m are not adjacent if m ≥ 2, and all
other pairs of vertices are joined by two arcs (see Fig.
9). Let wm denote the number of perfect matchings of
Gm(1, 2, 0). From (5) we get

wm = Hf(T2m(1, 2, 0)) =

=
m∑

k=0

(−1)m−k−1

k!

[
(m+ k − 1)!

(m− k)!
(−3m+ k)

]
.

(19)

Putting w1 = 1 and using (19) for consecutive m ≥ 2,
we get the sequence A336286 from [7]. This sequence
is also represented in the third column of Table 2. By
Proposition 2

wm ∼ (2m)!√
em!

.

It is not hard to see that sequences (um)
and (wm) are linked to each other by the following
relationship:

wm = um − 2um−1, m ≥ 2. (20)

Indeed, the diagramGm(1, 2, 2) differs fromGm(1, 2, 0)
by two arcs joining the vertices 1 and 2m. Hence, um

is greater than wm by twice the number of perfect
matchings of Gm(1, 2, 2), in which the vertices 1 and
2m are joined by an arc, i.e., by 2um−1. From equalities
(16) and (20), we can derive the following recurrence
relations for wm with m ≥ 4:

wm+1 = (4m+ 4)wm − (8m− 13)wm−1 − 2wm−2,

and with m ≥ 3:

wm+1 =
(32m2 − 12m+ 2)wm + (8m+ 1)wm−1

8m− 7
.
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1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Fig. 9. The arc diagram G2(1, 2, 0) and its perfect
matchings.
Рис. 9. Дуговая диаграмма G2(1, 2, 0) и ее совершен-
ные паросочетания.

3. Conclusion

In this paper, we have considered the method
for the explicit calculation of the hafnian of symmetric
three-parameter Toeplitz matrices in polynomial time. In
addition, in the case of non-negative integer parameters,
this method allows us to calculate numbers of perfect
matchings of variousmultigraphs represented in the form
of arc and chord diagrams. Thus, we produce a certain
class of integer sequences. Some sequences from this
class have long been described in OEIS. But the method
under consideration allows us to look at these sequences
from the point of view of graph theory.
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