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HUYEeHHOI'O IBUXXEeHNA. HpI/IBeIIeHbI pe3yabTaThbl YnC-
JIEHHBIX 3KCIIEpDUMEHTOB.

KaroueBsie caoBa:
803myuieHHas 3adava 08yx men, L-mampuuywt, unme-
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Abstract

The problem of separation of variables in some coor-
dinate systems obtained with the use of L-transfor-
mations is studied. Potentials are shown that allow
separation of regular variables in a perturbed two-
body problem. The potential contains two arbitrary
smooth functions. An example of a potential is con-
sidered allowing explicit solution of the problem in
terms of elliptic functions. The cases of bounded
and unbounded motion are shown. The results of
numerical experiments are given.

Keywords:
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Introduction

The integrable cases of motion equations have
great practical value. Their significance is determined by
the fact that with the help of their solutions one can an-
alyze the motion. In a number of cases integrable prob-
lems are used to construct intermediate orbits [1,2]. One
of non-trivial examples of integrated systems is the par-
ticle motion in a Newtonian field with additional constant
acceleration vector. This had been investigated earlier
by a number of authors [3-5] and applied to analysis of
space flights with constant jet acceleration. In 1970, this
problem was studied using regular coordinates obtained
from the KS-matrix [6]. In contrast to [6], in [7] integra-
tion of the same problem was performed in regular coor-
dinates obtained with the use of L-transformations.

In the present work we consider a problem of con-
structing potentials allowing integration of the equations
of motion. The idea of our approach consists in the fol-
lowing. First, a new dynamic system is constructed, hav-
ing more degrees of freedom than the original one. To
do this, an L-transformation is applied. The theory of
L-matrices and their applications is given in [8,9]. Us-
ing new coordinates, a general potential is selected, al-
lowing separation of variables in the Hamilton - Jacobi
equation. After this, an inverse transform to original co-
ordinates is performed, using explicit formulas. As a ba-
sis for selecting general potential with the required inte-
grability property, a well known Stackel theorem is used
[10]. This theorem gives necessary and sufficient condi-
tions for separation of variables for orthogonal Hamilton
systems, i.e. systems whose Hamiltonian contains only
squares of generalized momentums.

Note that separation of variables depends on a
choice of a coordinate system. We consider here three
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kinds of coordinate systems: regular, bipolar and spheri-
cal. The last two systems are introduced in regular coor-
dinates. Canonical equations in regular coordinates are
constructed using arbitrary L-transformations from the
initial canonical motion equations of the perturbed two-
body problem. The new equations have also orthogonal
form and are invariant with respect to L-similarity trans-
forms. In the nonperturbed case these equations do not
have singularity at the attracting center. Due to invari-
ance with respect to some perturbing potentials allow-
ing integrability, one can introduce two additional angular
parameters.

As aresult of this approach the general solution of
original system is represented in parametric form, where
fictitious time plays the role of parameter, while the phys-
ical time depends on this fictitious time and initial data.
This sort of integrability is sometimes called 'Sundman
integrability’ [11].

As an example of integrable case of the perturbed
two-body problem the special kind of potential is given.
In this example the explicit solution of the problem in
terms of elliptic functions is expressed, and the criterion
of bounded motion is formulated.

Notation. Everywhere below vectors are re-
garded as column vectors, and are given in bold letters.
The sign ' placed over the vector or matrix symbol de-
notes transposition. A quantity evaluated at the initial
moment of physical or fictitious time is denoted by zero

superscript: f(0) = f°.
1. The separation of variables

Let us consider the Hamiltonian function of the
perturbed two-body problem

1
H=Hxy) =3l £ +V.
(1

where x = (;rl,;rQ,xg,)T is the position vector of the
point of mass m with respect to the point of mass my;
y = (y1,y2,y3)7 is the generalized impulses (y; =
;, © = 1,2,3); v is the gravitational constant; V'
V' (x) is the perturbed potential.

For construction of the equations of motion in reg-
ular coordinates we will need the L-transformation z =
L(q)q generated by the L-matrix of the fourth order that
has the following properties:

H= ’Y(m—i_mo)) r= |X‘a

L(q)L"(q) = L"(q)L(q) = |gI’E Vq<R*, (2)

(L(a)p): = (L(p)a)i, i=1,...,p, 3)
(L(@)p)i = —(L(p)a)i, i=p+1,...,4 (4)
Vaq,p e R

Here E is the unitary matrix. The conditions (2) — (4) si-
multaneously hold only for p = 1 or p = 3. The quantity
p is the rank of L-transformation. The following theorem
can be proved [8,9].

Theorem 1. An arbitrary L-matrix generating L-trans-
formation of rank three, has the form

21

q;KleL
q’ KoKy
L = , 5
(q) qTK3K4 ( )
a’ K4
where orthogonal skew-symmetric matrices
Ky, Ko, K3, K, are equal to either
Ki = aliu + a2iv + a3iW7 1= 17 27 33 (6)
K4 = alX + Cl2y + agz,
or
K; = a; X +a2Y + CL3@‘Z, 1= 17 27 37 (7)
Ky =ad + asV + azW.
The triplet of vectors e; = (ali, ao;, agi)T, T =

1,2,3, forms an orthonormal basis in R3, and e =
(a1,as, ag)T is an arbitrary unitary vector.

Conversely, the arbitrary four skew-symmetric
matrices in the form (6) or (7) define the L-matrix by

the formula (5).
In the formulae (6) and (7) there are the so-called
basic skew-symmetric orthogonal matrices

0-10 0 0 0-10
1 00 0 0 0 01
U=10o 00-1]> Y=11 0 00"
0 01 0 0-1 00
00 0—1 00—-1 0
00 -1 0 00 0 —1
W=101 0 0] ¥={10 0 0]
10 0 0 01 0 0
0-1 00 0 00 —1
1 0 00 0 01 0
Y=10 0 01] Z2={0o-10 o0
0 0-10 1 00 0

The matrices K; are called generators of the L-matrix. If
K4, K5, K3, K, are calculated by the formulae (6) then
L(q) is called the L-matrix of the first type, otherwise the
L-matrix of the second type.

We transfer from variables t, x;, y; to the new
variables 7, g;, p; by the formulae

dt = rdr,
{ X = A({l)q, @
= —==A , ,peR?
Y= 9jqP (@)p;, 49, p

where the matrix A(q) is found from (5) by rejection of
the fourth line:

a' K1K,y
Aq) = | q' KK,y
a’ K3K,
Consider the equations of motion in new variables
qi, Di
dq; oK dp; oK
M 9 B 9™ 5 _0.1,2,3,4 (9)
dr  Op; dr 0q;

with the Hamiltonian
1
K= 2Ipl* +polal® + lal*Ve(a),
Ve(q) = V(x(q)).

(10)
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In this system the first equation with 5 = 0 corresponds
to transformation of time: dqo = |q|?dr. The variable
Ppo is conjugate to ggp and has a constant value.

If

x(0) =x°, y(0)=y° (1)
are initial conditions for the variables of the system with
the Hamiltonian (1), then, as it is proved in [12, 13], with
the initial values defined by formulae

{ q0(0) =0, 0 =A(q%)q’,
po(0) = —H(x",y%), p°=2A"(q")y",

the solution of (9) becomes, under the transformation (8),
a solution of the system with the Hamiltonian (1) satisfy-
ing the initial conditions (11). The function q* K4p pre-
serves a constant value along solutions of (9), and with
the initial conditions from (12), this value is zero [13].
Hence, the equality q” Kip 0 is the first integral
of this system. The variable gy coincides with physical
time ¢.

Note that the systems with Hamiltonian (1) and
(10) have different orders. The choice of initial values by
the formulae (12) means that there is a special construc-
tion of the system (9) for each trajectory of the system
with Hamiltonian (1).

Let’s pick up the form of potential V', admitting di-
vision of variables. For this purpose we shall take ad-
vantage of the theorem proved by Stackel [10].
Theorem 2. The system with Hamiltonian

(12)

1
H = Zcz qi,---54n (2p12+‘/2(ql))7

admits separation of variables in the Hamilton - Jacobi
equation if and only if there is a nonspecial matrix ® of
order n which elements @; depend only on q;, such as

dc = (1,0,...,0)7, (13)
where ¢ = (c1,co,...,cn)T.
In this case the integrals of motion will be
L= B _Z/Sﬂh i sz
V fz Qz
(14)
©si(gi dqt
—Bs = / =2,...,n,
’ Z V fz Qz
f’i(Qi)a izl,...,n,

where fi(q;) = 2(a101i(q:)+. . . Anni(a:)—Vi(a:));
a;, Bi (i=1,...,n) is constant. As ¢{ a simple root of
the function f;(g;) is taken.

Consider again the separation of variables in reg-
ular coordinates ¢;. The Hamiltonian looks like (10). In
this case we have

1
61202203264217

lal*(po + Ve(a

»Mr—l

22

The solution of system (13) will be, for example, the ma-
trix

OO
|

O == O

——_0 O

—_—o oo

The potential is defined up to a constant. As pg is a con-
stant, we obtain

(Vi(q1) + Va(gz)+
+ V3(gs) + Va(qa))

1
Ve(q) = lqP

(19)

Let's find expression for the potential V,(q) in
original coordinates x. We notice that variables z; and r
are quadratic forms of the variables q1, g2, g3, q4. Using
the L-similarity transformation it is possible to choose an
L-matrix such as a linear combination Bix1 + Boxg +
Bsxg that will be equal to the sum of squares of ¢; with
some coefficients. Note that for any L-matrix we have
r = |q|?. As V.(q) is to be of the form (15), the required
potential in z-coordinates will be the function of the form

1
Vi(x) = ;(AT + Bix1 + Bowy + Bzxs).  (16)

Let’s specify a choice of L-matrix with the required
property. Introduce the notation

B=\/B{+B;+ B3, b

Suppose that the L-matrix is of the first type. That
is, K1, Ko, K3 are calculated by the formula (6); for sim-
plicity we assume that Ky, = —). Then

B;

B Y

i=1,2,3.

Ar + B(byx1 + baxe + bgxs) =
= Ar — Bq® [(blall + baaia + bzaiz)U+
+ (brag1 + baaga + bzags)V+
+ (brazy + baags + b3a33)W] Ya.

Choose the parameters a;; of L-matrix in such a way
that the following equalities hold:

{

Geometrically, the solution to this system means that
the vector i; (a11,a12,a13)" coincides with b =
(bl,bg,bg)T, and the vectors i2 = (a21,a22,a23)T,
i3 = (as1,as32,a33)” are orthogonal to b. Moreover,
it follows from the structure of the L-matrix that vectors
iy, ig, and iz form a frame. It is evident that the system
(17) has infinite number of solutions. We write its general
solution. For the first vector we have

iy = (b1, b, b3)"

biai1 + baai2 + bzais
biraz1 + baaog + bzass
birasi + baasa + bzass

(17)

L,
0,
0
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For iy and i3 we assume, in the case b% + b% # 0, that

1
g = ————— <b2 cos a + bibg sina, —by cos a+
Vb3 + b3
T
+ bobg sin o, —(b3 + b3) sin a) )
1
iz = ——— (—bg sin a + b1b3 cos a, by sin a+
/b3 + b3

T
+ babs cos o, —(b3 4 b3) cos a)

If b7 + b3 = 0, then b = (0,0,b3)7, b3 = £1. There-
fore, we can take the following vectors as the general
solution of the system (17):

T

i1 =(0,0,b5)", iy = <cosa, sin a, O) ,
T
iz = b3 (— sin «, cos 0) .

The quantity @ € [0, 27| plays the role of an arbitrary
parameter of the general solution.

After choosing the parameters a;;, the matrix
A(q) is determined uniquely. The solution of (17) gives

Velq) = |Ol|2(Alql2 Bq"UYq) =
1

= e+ Bl

+ (A+ B)g3+
(A—B)q3).

Hamiltonian in g-coordinates corresponding to this po-
tential becomes

+(A—B)g +

4
1
K= ZZ( P} + 4pog; +4qu1))

=1

where D1 = Dy = A+ B, D3 = D, = A— B. The
canonical system of the equations falls into four subsys-
tems

dg;
dr

_ 1 dpi
—4pz, dr

_2(p0+Dl)qm 1= 1727374 (18)

These systems are equivalent to four harmonious oscil-
lators. Integrals of motion are obtained either from (14),
or directly from solving (18). Thus, separation of vari-
ables for potential (16) is carried out.

For regular g-coordinates, we introduce a new
coordinate system. To preserve the canonical form of
equations of motion, we use the canonical transforma-
tion with generating function

U = p11/Q1 cos Qa + p2y/Q1 sin Qo+
+ p3v/Q3 cos Qu + par/Q3 sin Q4.

23

We obtain
ov
q = o = vV Q1 cos Qs,
ov .
G2 =7 = V/Q1sin Qy,
P2
ov
g3 = @7 = QS CcOos Q47
P3
ov .
qa = (:)7 = QS San4a
% <19>
P = TQ1 = 2\/@(191 cos Q2 + p2 sin Q2),
ov .
P, = T% — \/@(—pl sin Q2 + p2 cos Q2),
ov 1
Py=_— = !
T80 T 2y, Peos @it pasinQu),
ov .
P, = @ = \/@(—pg sin Q4 4 p4 cos Qy).

The coordinates )1, Q2, Q¥3, 4, obtained from (19),
will be called bipolar. From the last four equations we

find p1, p2, p3, Pa:

p1=2P1\/Q1cos Q2 — \ﬁ sin Q2,
p2 = 2P1\/Q15in Q2 + —= cos Q2,
F
(20)
p3 = 2P34/Q3cos Q4 — \ﬁ sin Q4,
Py
ps = 2P3+/Q3sin Q4 + —— cos Q4.
V@3
In the new variables the Hamiltonian K becomes
— 1 P2 P?
K=< (1QiP2 + 2 +4QsPF + )+
8 @ Q1 @aly Qs
+po(Q1+Q3) + (Q1+Q3)V,

where function V is expressed in terms of Q);.

Similar to the above, consider separation of vari-
ables in bipolar coordinates. In the notations of theorem
2 we now have

1 1
= Q1, 027@7 =Qs, C4*TQ3-
As a solution to (13) one can take the matrix
L 00
7
——= 1 0 0
2
o=| 4 . L, 21)
R ?3
0 0 —=5 1
403

For the potential V' admitting separation of variables, we
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Va(Q2)+
V4(Q4)>~

1
Q1V1(Q1
o a; (@@ + 45
— 1
+QsV +—
Q3V3(Q3) 10,
In g-coordinates we obtain the form
Va(arctan &)
A(q? + ¢3)
V 4(arctan 3‘3*))
Alg3 +a5) /

Passing to x-coordinates, we use the concrete L-trans-
formation

1 _
V.= qF ((qf+Q§)V1(qf+qg)+

+ (g3 +a1)Vs(d3 +a3) +

T1 = 2q194 + 2q243,
T2 = —2q1q3 + 2q2q4, (22)
r3= ¢ +q¢—q3—qj,

which follows from (5), (6) with K1 = V, Ky = W,

K3 = U, K4 = —). Taking into account that for any
L-matrix the equality 7 = ¢% + g3 + 3 + g3 holds, we
obtain

1
= G + @ = < (r+axs3).

2 2
The general solution of the first equation is

/r—x [r—x
C05¢9 q4 = & 51nw7

v € [0, 27).

qg‘“]i: (7"—313’3),

Then
21 8in Y — x9 cos Y T1Co8Y + T siny
\/i\/’l"—l’g ’ \/ﬁx/T—ng '

In a similar way we may introduce a parameter, using the
second equation,

7"+ T3
=1/ cosr, g2 =

Y1 € [0 27T

q1 = q2 =

2 sin

As is well known [12], with L-transformation for a point
in R? at a distance r from the origin, there corresponds
a point of some circle of radius /7 in R*. The vari-
ables ¢; contain an arbitrary parameter 1 (or v1), giving
parametrization of the given circle. In the original coor-
dinates x; this parameter disappears. Note that

q2 = tan wla

d_ tan .
q1 3

We therefore assume functions V5, V, to be constant.
Then we arrive at a potential of the form

% [Gl((T +23)/2) + Ga((r — 333)/2)} , (23)

where (G, G2 are arbitrary smooth functions. The
Hamiltonian in bipolar coordinates for this potential takes

V(x) =

24

the form
_ P2 G P2
K:Ql(—1+po+ 16(2?1))+4221 -+
G2(Q3) 1 Pf
+Q< + po + O ) 4@374

In view of the solution (21) for f; from the theorem 2 we
have

(a1 ax oy G1(Q1)
f1(Q1) 2<Q1 00, PTg >,
f2(Q2) = 2a,
(a3 oy G2(Q3)
(@) =2(gt —qgs — 10— )
J1(Q1) = 20y4.

Then integrals of motion are obtained by formulas (14).
Let's consider one more case of separation of
variables. Introduce the spherical coordinates in ¢-co-

ordinates
@1 = /Q1 cos Q2 cos Qu,
g2 = \/Q15in Q2 cos Qu,
g3 = /Q1 cos Q3 sin Qu,
qq = \/@sin Q3 sin Qy4.

We supplement the transformation (24) to obtain a
canonical transformation of impulses

P1 = 2/ Q1 cos Q2 cos Qu P —

sin Qo cos Q2 sin Q4

" V@rcos Qs var
Py = 2\ﬁsin Q2 cos QaPr+
cos Qo bln Q2 sin Q4
\ﬁ cosQy V@1 v (25)
p3 = 2/Q1 cos Q3 sin Qu Py -
_ sin Q3 cos @3 cos Q4 p
VQ1sin Q4 vor
Dy = 2\/7$in Q3sin Qu P+
cos Q3 sin Q3 cos Q4 p
\ﬁ SinQy VQ1 v
Then in new variables the Hamiltonian will be
— 1 P2 P2 P?
K= §<4Q1P12+Q1 con Q4+Q1 Si;’Q Q4+Q—41)+
+ poQ1+ Q1 V.
In the notations of Stackel theorem we have
1
c1=0Q1, c2= ma
B 1 1
@ 4Q; sin® Q4 “= rQl
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In this case the solution of (13) will be the matrix

1
o 00 0
01 7cos21Q
¢ = 001 ——1 ! (26)
) sin? Q4
02 00 -1

The potential V, admitting separation of variables, can
be written as

_ 1 _ 1 _
= — \% 4+ —V +
o (V@) + 5 V2(@2)
1 1
ok )
4Q1 Sil’l2 Q (Q3) Q (Q4)
In view of relations
Qw%%h=ﬁ+ﬁzrz%,
@ﬂ¥@:ﬁ+ﬁ=r;m,
Q1 = |Q|2 =
2 2 1—
tan® Q4 = q:;’ - q‘é = 1‘3/7",
qi + 43 1+axzs/r
@2 = arctan q—Q, (Y3 = arctan 4
q1 q3

following from (22), (24), and the remarks above, we ob-
tain the required form of potential in x-coordinates

1 2A
Vo = e+ 2
3 (27)
26D
r— I3 r 2 r /]’

where GG1, G5 are arbitrary smooth functions and A, B
arbitrary constants.

Now assume that a Hamiltonian (1) with the po-
tential (27) is given. Applying L-transformation (22), we
write the new Hamiltonian in g-coordinates as

1
K= §|P\2 + polal® + G1(la)*)+

A B N
Gi+a G+a
1 21 02 o2 g2
+| ‘2G2<q1 (J2|q|2Q3 q4>.

Fulfilling canonical transformation (24), (25), we have

Gl(@l))+

4Q1 Cos2 Qa4 ( + 4A)

18+

+ 4G(cos 2@4))

:Q1<7+ +

(1 3
4Q] sin Q4 2
(

2

TN

25

Taking into consideration matrix (26), we then obtain

fi(@Q1) = (% + 4%2 —Ppo — Glcé?l)),
f2(Q2) = 2(a2 —4A), [f3(Q3) = 2(a3z — 4B),
(65) a3
f4(Q4) = 2(_ cos2Qq  sin®Qq

— ay — 4Go(cos 2Q4)).

The integrals of motion follow from (14).

Note that using an arbitrary L-transformations al-
lows one to introduce two parameters into the poten-
tials obtained. Tthese two parameters are determined
by some constant unit vector b. For example, instead of
(27) one can write

1 24
Vo = Z[Grn + gt
2B 1 bTx
+ r—bTx +;G2( r ﬂ

2. Integration of the system of equations
in a special case

In this section we perform straightforward integra-
tion of a system with potential of the form (23) having
additional parameters. Namely, consider the potential

—%(Gl((r +bTx)/2)4+
+Ga((r = bTx)/2)),

V =V(x)

(28)

where GG, Go are some smooth functions, and b =
(b1, ba, b3)T an arbitrary unit vector. Note that the vec-
tor b provides two parameters in explicit form. Having
in mind only theoretical investigation (integrability prob-
lem), one can take b to be the ort along the z{-axis. On
the other hand, from the more practical point of view, in-
troducing vector b gives us additional degree of freedom
necessary for applied problems of celestial mechanics.
In such problems, the axes are usually connected with
some special directions (equinox or zenith). Therefore
the presence of the vector b in potential (28) allows one
to turn the coordinate system at one’s will.

As G1, G2, one can take, for example, functions
of the form

1 1
“(r+bTx)*, Z(r-bTx)* k=12,...
T r
We consider a finite linear combination
1 N
| — (A b7x)* + By (r —bT k). 29
7“;;1 k(r+b1x)" 4 By(r—b'x)" ). (29)

Here Ay, B;, are constants. Such a potential was con-
sidered in [16]. This case leads in general to hyperelliptic
integrals.

For an interested reader there is a problem: find a
real perturbing potential which can be approximated by
functions of the form (29). Note that the combination

B b2 4

B T \2 _ T
4 4 —(r—b"'x)*=—-Bb"x

r
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gives potential corresponding to a constant force. Appli-
cations of such potential were considered in [3-5].
The canonical equations of motion have the form

dri _
dt _ylv
dy; % x;

+ Ga((r — bTx) /2))+ (30)

+ %(G’l((r +bTx)/2)(% 1)+
+ Gy(r = bTx)/2) (2~ b)),

where i = 1, 2, 3 and the sign prime indicates the deriva-
tive.

This system is the same as the equation of the
perturbed two-body problem

LN Ny O sy /9)—
x+r3x—2T(G1((r+b x)/2)

— Gh((r—bTx) /2))b+
i

53 (GH((r+BTx)/2)+

+ G5((r — bTx)/2)>x—
_ Tig (Gi(r+b™x)/2)+
+ Ga((r — bTx) /2))x.

From this one can see that the perturbation is de-
fined by two forces. The first force is collinear to the fixed
vector b, and its module varies in dependence on vector
xX. The second force is the central one.

We are going to show that the system (30) is in-
tegrable in regular variables found by L-transformations.
Transformation (8) contains an arbitrary L-matrix. A spe-
cial choice of this matrix allows one to separate the vari-
ables in the case of an arbitrary constant unitary vec-
tor b.

Let us consider the term in (10) containing V.(q).
In the new variables this becomes

|a*Ve(a) = =G ((|al*+
+qF (1 Ky 4 b2 Ko + b3 K3)K4q)/2)—
*GQ((|q|2 — qT(b1K1 + b2K2 + bgKg)K4q)/2).

We assume that the L-matrix has the first type and
Ky =-Y. Then

a|*Ve(a) = —G1((la]* — C)/2)—
- Ga((la® +C)/2), (31)
where
C=q" [(blan + boayo + bzaz)U+
+ (biag1 + baaga + bzags)V+
+ (bras1 + baass + b3a33)W] Vaq.

26

Let’s select parameters of L-matrixes a;; from a system
(17). Then

—q1
—q2
q3
qa

Substituting the found value C' in (31), we obtain

a?Ve(a) = —G1(qf + a3) — G2(g3 + d3).

It follows that the Hamiltonian (10) is represented in the
form of the sum

C=q'uyq=q" —qi — ¢ + 43 + 43

K=K+ ICQ,
where
1
Ky = g(p? +p3) +po(di +a3) — Gilal +a3),
1
Ko = =(p3 +p3) +p0(a3 + a3) — Ga(q5 + d3).-

8

As the value of pg is constant, the system (9) splits into
two independent subsystems

dqi 8/C1 dpi 8IC1 B

dr Op; = dr 0q; ' ! T (32)
dqi 8ICZ dpi 8/C2

dr  0Op; dr 0q; ' 3 (33)

We integrate the system (32) again. In the bipo-
lar coordinates Hamiltonian /C;, and accordingly the sys-
tem, have the form

— 1 P2

K1 = §(4Q1P12 + ai) +po@1 — G1(Q1),
@, A P

dr dr 404 (34)
dP; 1, P2 ,

>l _ _-p 22

dr ) 1 + SQ% Po + Gl(Ql)a

dPs

—= =0.

dr

Since the Hamiltonian 1C; does not explicitly de-
pend on 7 and ()2, the system (34) has two integrals,

1 5  P3 _E
§Q1P1 + 80, +poQ1 — G1(Q1) = s (35)

P2 =C1.

Here, F/; and c; are the constants of integration. Taking
these integrals into account, the equation for P; may be
written in the following form

o

& B G1(Q)
dr — 4Q3? '

SQI + Gl (Ql) - Ql

Eliminating d7 from equations for P;, ()1 and integrating
the resulting equation, we find
!

P =
ETeN

(I)l(Ql)v 61 ::tlv

where
®1(Q1) = —c3 4+ E1Q1 + c2Q7 +8Q1G1(Q1)
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and cs is integration constant defined by The formulae of inverse transformation

& E; G1(QY)

T T

Q1 =¢t+¢, tanQy =2,

QB = q% + qia tan Q4 q3 )
Due to nonnegativity of ()1, from the first equation of the _qip1 + qap2

co = 4(P})?

system (34) it follows that P= 2qZ+ ¢2) Py = —qp1 + qipe,
51 = sign Q). Py = (123%)33—'—7(]4]9)4, Py = —qup3 + q3pa
Substituting the derived P; to the first equation of (34)
we find allow to define initial values of the variables ); and P;
@1 0 (1=1,2,3,4).
T+ c3 = 201 71. (36) The values of integration constants c1, co, c3, ¢4,
Vv @1(Q1) and E; are determined by the initial values of (01, Q)2,

Py, P,. These five constant values are connected with
Using the continuity principle, the sign before the integral ~ each other by the integral (35). In the same way, the
(36) cannot change when ®1(Q1) is non-zero. There-  constant values cs, cg, c7, cg, and I3 are connected by
fore, the function 7(Q1) in this case behaves monotoni-  the integral (37) and are defined by initial values of @3,

cally. Inverting the integral (36), we obtain Q; asafunc-  Q4, P3, and P;. From pg = —H (x%,y") we also find
tion of 7; we substitute this function in the second equa-  relation E; + E5 = 8u. One has to add the above rela-
tion of the system (34). Then we get tions for co and cg to these connections. Besides, as the

-
C1 dr case we have

Q2 = +ecy, cq= Q5.
Ql( ) .
q (=Y)p = —@p1 + ¢1p2 + qap3 — q3ps = 0.

Here c3 and c4 are the integration constants. Thus, the

bilinear relation q” K4p = 0 is the integral of (9), in our

values Q1, 2, P; are represented as functions of 7. If ~ Therefore the equality P> = Py, or equivalently ¢; = cs,

®4 (@) is a polynomial, the integral (36) is, in general,  also holds.

hyperelliptic. _ . o Applying further the first four formulas (19) and
The mtegrahqn of the system (33) is done simi-  (20), we find ¢;, p; (i = 1,2, 3,4) as functions of 7. Fi-
larly. As a result we find nally, integrating the two remaining equations of (9), we
. obtain pg = —H (x",y) and physical time expressed
cs dr 0 through 7,
Q4 = + cs, g = Q )
4 Qg (7’) 4
2
) . tIQ0=/|q dT + co = t1 + 2, (39)
P3 = 25 V®2(Q3), 02 =signQy, Py=cs,
where where
P3(Q3) = —c2 + F2Q3 + c6Q3 + 8Q3G2(Q3). . .
Here cg and FE5 are the integration constants defined by o . .
the equalities b= [ Qur)dr, ta= [ Qs(r)dr, ¢ =0.
0 0
cg = 4(P0)2 Cg o @ _ GQ(Q%)
3 Q%2 Q9 QY Thus, the system (9) is completely integrated and we
can, at least locally, find a required trajectory. Here it
Ey P4 is necessary to note, that if perturbing potentials G, G2
] 7Q3 3T 3o, 803 +poQs — Ga(Q3)- B7) 4, (30) are analytic, then, as it is known from a course

. . _ . of the differential equations, the solution of the problem
The function Q3(7) is found by a reversion of the integral  will also be analytic. Let us suppose that the local in-

Q3

dQs determined function. In this case we can conclude, by
T4+ cr =200 | —. (38)  uniqueness of analytic continuation, that this inversion
vV P2(Q3) gives not only local, but also global solution of the prob-

version of integrals (36), (38) appeared to be a globally

lem (30). This is the case when functions G, G5 are
Thus, the values D3, (4, and P; are also determined as  polynomials of degree two or three. In this case (36) and
functions of the variable 7. The lower limits £ and n in  (38) are the elliptic integrals, for which inversion we have
integrals (36) and (38) are chosen according to the loca-  the well developed technique of elliptic functions at our
tion of ()1 and @3 with respect to the roots of functions  disposal; thus, we have found the solution of (30) in ex-

@4 (Q1) and P2(Q3), respectively. plicit form.
27
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3. Inversion of the integral in elliptic case

In this section we consider one case of functions
G1 and G, which reduces to elliptic integrals. Other
cases have been studied in [7, 14,16, 17]. Let us take
the functions G1 and G

A 1 T T \2
G = W+A1(r+b x)+Az(r+b" x)°, (40)
Go= —=L L B (r—bTx)+ Ba(r—b"x)?, (41
2—m+ 1(r x)+Ba(r—b'x)°, (41)

where A_1, Ay, Ay, B_1, B1, and Bs are the parame-
ters of the potential. Then for the functions ®;(Q1) and
$,(Q3) in (36) and (38) we have the expressions

®1(Q1) =1 + E1Q1 + c2Q7 + 324207,

2(Q3) = C5 + E2Q3 + c6Q3 + 32B2Q3.

Here /C\l = —C% + 4A,1, Cy = 16A1 — 8p0, /0\5
—C% +4B_1, c¢ = 16 B1 — 8pg.

Firstly, let us note that the variables )1 and Q3
are non-negative by definition, and that from integrals
(36) and (38) it follows that the ranges of these variables
are determined by the inequalities

®1(Q1) >0, P2(Q3) =0

Let us reverse the integral (36). The number of roots
of the polynomial ®; and their positions depend on the
value of Ay. With A; = 0 the degree of ®4(Q1) equals
totwo. The integral (36) is found in elementary functions,
so this case is not considered here. We distinguish two
cases: Ay < 0, A3 > 0. Let's note the roots of &1 (Q)
as &1, &9, &€3. The cases under consideration will be se-
quentially numbered by parameter ¢ 4.

I. Assume that Ay < 0. In this case ®1(—o0) >
0, ®1(4+00) < 0. The value ®1(0) = ¢; may be both
positive and negative. For actual motion there should
be at least one positive root. The qualitatively different
cases of the graph of ®;(Q1) are shown in Fig. 1 and
2. In the case of three real roots (Fig. 2), the axis of
ordinates goes between &1, & if €1 < 0, and left with
respect to &1 or between &, £3if¢; > 0.

(42)

A

Fig. 1. The graph of ®:(Q1). The case A> < 0.
Puc. 1. I'padpux ®1(Q1). Cayuait As < 0.

The case 74 = 1. Suppose that ®; has one real
root &1, and that QY € (0,&;) (Fig. 1). Let's write the
integral (36) in the form

1 dz
2\/—2A2§ VG —2)Z2tbz4c)

T+ c3 =

28

where the square trinomial 22 + bz + ¢ has no real roots
and is positive for all z, and

b=E& 4+ ——, c=bé + (¢>0). (43)

FEq
32A ’ 324,
Apply the substitution

1 —cosp

Z:&_al—l—cosgp’

=1/& + b6 +c

in the integral and put the notations
St Q1

1
=51
a 179 +

ll = 2\/ _QQAQ.

§1+b/2
a

p1 = 2arctan

)

| 51 fz &3 Q1

Fig. 2. The graph of ®:(Q1). The case A> < 0.
Puc. 2. I'padpux ®1(Q1). Cayuait A; < 0.

Then we derive

d¢ (44)

5 \/1—kisin?p

Putting here 7 = 0, we find an integration constant cs:

o}

sign Plo/
3 = — ’
h 5 \/1—kfsin®¢p

/ 0
©Y = 2arctan G- Q

Check that k3 < 1. As 22 + bz + ¢ has no real
roots, we have b2 — 4¢ < 0. Therefore,

dp

+b/2’ 1

(§1+ ) <4 bE +e=a? ;»(51

Hence, |k1| < 1. Reversing the integral (44) derived
above, we come to the function
2a

Q=&+a- 1+ en(ly(1 +¢3); k1)

It is easy to see that for Q1 € (0,&;) the denominator
cn(u) + 1 # 0. Calculating the derivative of ()1, we get
01 = —signsn (1 (7 + ¢3); k1). For the variable Q)2 we
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find

o 1T
Q2= 4(&1 + a)Jr

du
1+ nq en(u; k)

acy

PNGCErD

l l1(7+c3)

llcg

du

1+ nq en(u; kq)
0

+Q9,

2a

=1 )
n1 +§1—a

Note that
n% 9 c

n% —1 ST 40,51
Therefore for calculating the integral of (1 +
n1 cn(u; k1))~ we apply the formula (341.03) [15]

> 0.

u

/ du _
1 +nen(usk)

0

1 n?
1-—n? {H(u, n? 1’k) —ngl},
n®#1, (45)
with
1 n?—1
91l =3\ e
Y k? + k2n? sn(u; k) + vVn? — 1dn(u; k)
n

)

VE? + k2n?sn(u; k) — vn? — Tdn(u; k)
K?=1-k.

Here we note the elliptic integral of the third kind

as .
dv
1I k)= | ——m—————.
(u,m; k) /l—nsnz(v;k‘)
0
For t1 we have
) ly(T+c3)
a U
t = (&4 +a)T— — "
! (51 a)T ll [ / 1+cn(u; kl)
0
llcg
_f__a
1+cn(u;ky) |
0

The integral of (1 + cn(u; k1))~ is calculated by the
formula (341.53) [15]

u

/

0

dv
1+ en(v; k)

dn(u; k) sn(u; k)
1+ cen(u; k)

=u—F(u)+ , (46)

where E(u) = E(p; k) is incomplete elliptic integral of
the second kind (o = am u).

29

The case i4 = 2. Suppose that ®1(Q) has

three real roots 0 < &1 < & < &3, and QY € (0,&4).
Let's write (36) as

5 7 dz
2\/—2142Q1 V(€ —2) (& —2)(& — 2)

T+ c3 =

Making the substitution ¢ = arcsin /(&1 — 2) /(&2 — 2)
and reversing the resulting integral, we find

(&2 —&1)

@1 =& en?(ly (1 + ¢3); k1)’
where
b= |28 G 6,
& —&
@9
sign P / dp

C3 = I )
Loy /1= k#sin®o

¢ = arcsin b= Qg.

52 - Q1

Now we calculate §;. We differentiate ()1 and use the
formula of double argument for elliptic sine. We have

Q' :211(53—52)cn_3(u; k1)(=1) sn(u; ky)dn(u; ki) =

= (fg—fg)cn_4(u; kl)(l—k%snél(u; k1))sn(2u; k1),

where the notation u l1(T + ¢3) is introduced for

brevity. Therefore,
51 = sign Q) = —signsn (211 (7 + c3); k).
Now we find Q)5

_ar  al&-&) L
Q2 a 462 4[15152 [H(ll(T + 63)) ni; kl)
i + = &

For the value of physical time, corresponding to the vari-
able @1, we have

l1(T+c3)

&1 — &

I [/ cn2du
0

llcg

B / du
cn?
0

ty = &7+

]

where the integral of cn 2 (u; k1) is calculated by the for-
mula (313.02) [15]

(u; k1) (u; k1)

u

/ dvv 1
en2(vik) 1 — k2
0

((1 — k*)u—
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The case i4 3. The polynomial ®1(Q1)
has three real roots & < & < &, and QY €
(max{0, &2}, &3). Let us write (36) as

+ 51 dz
T+ C3 = .
2v/ =24, : V(= &)z - &)(& - 2)
3
The reduction of this integral to the standard

form (44) is carried out by the substitution ¢

arcsin /(&3 — 2)/(&3 — &). The result of reversion
can be presented in the form

Q1 =&+ (& — &)sn® (I (7 + ¢3); k1),
where the following notations are used

= 22 = A6 &),
&—&6
@)
. signPlo/ dp
3 = - )
b 0 1 — k?sin?

0 __ . /53 - Q(l)
p1 = arcsin 753 — 52 .

For 01 we find 6; = —signsn (21 (7 + ¢3); k1). Substi-
tute Q1 in the formulae for Q5 and ¢1. We find

Q2 = 4161153 [H(h(T +c3),m13 k1) —
— (lyc3,m1; k1)} + Q9
I (+es)
t1 =87+ &2 l_1 s [ n?(u; ky)du—
0
lics
- / sn? (u; kl)du].
0

The integral of squared elliptic sine is calculated by the
formula [15]

u

/snz(v; k)dv =

0

1
(= E(w).

Il. Assume further that Ay > 0. Now we have
®i(—o00) < 0, P1(4+00) > 0, and ®1(0) = ¢;. The
qualitatively different cases of the graph ®;(Q;) are
shown in Fig. 3 and 4.

The case i4 = 4. The polynomial ®;(Q1) has
one real root &1 and, accordingly, Q1(0) > max{0, & }.
The graph of &1 (Q1) in this case is shown in Fig. 3. Let
us write the integral (36) as

1 dz
2v/245 : ViE—)Z2 bz +¢)

T+ c3 =

30

where the square trinomial 22 + bz + ¢ > 0 for all z
The coefficients b and c are found by the formulae (43).

Applying the substitution
=\/& + b1 +c¢

and reversing the resulting integral, we come to the func-
tion

1 —cosp

Z:&%_al—i—cosgo7

2a
=& —a+ ,
=t -a L+ en(ly (74 c3); k1)
where
1 b/2
k‘%:*(l—w), 11:2\/20,142.
a

_ 81gn /
0

1—k251n )

0 _
©Y = 2arctan 1/ M
a

As above, one can show that k:% < 1. The re-
sulting function @1 () is unbounded, as it has an infinite
number of poles on real straight line, which are found by
the formula

_4m+2
=

K(kl) —c3, mEed

/& Q:

Fig. 3. The graph ®:(Q1). Case A2 > 0.
Puc. 3. I'padux @1(Q1). Cayuait A > 0.

| 51 fz /& Ql

Fig. 4. The graph ®;(Q:). Case A2 > 0.
Puc. 4. I'padux @1(Q1). Cayuait A > 0.
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Further we find that §; = signsn (I1(7 4+ ¢3); k1).  Reversing (47) and using the inverse substitution, we

For variable ()2 we have find the required function
Qp= 7 Q1 =&+ (& — &) (L (T + ¢3)1 k1),
. L
4(§1 —a) where
l1(T+c3) o9
__ % l _duw sign P dyp
201 (62 — a2 1+ nicen(u; k €3 = )
16 ) 0 en(uif1) h 5 1— k2 sin? ¢
lic
S N TR 0 Q-&
1+ nq en(u; kq) z ] = arcsin .
) 2a One can show that §; = signsn (211 (7 + ¢3); k1). For
ny = & +a Q2 we find
c
Note that Q2 = o 15 [H(h(T +c3),m1;5 k1) —
181
ni R :_(51—G)2<0<k2 0 13
n? —1 n? —1 da&; Lt *H(llci%;nl;kl)} +Q3, n1= 1*?1.

Therefore for calculating the integral of the function (1+  For the first summand of physical time ¢ in (39) we have
n1cn(u; k1)) ! the formula (45) is to be applied with

1 —n?2 [k2 + k?n? sn(u; k) - T+£2_51
N=N\ 222 arctanl 1—n2 dn(u;k) |’ e h

E?=1-k%
If &, = 0then n; = —1, and for calculating Q)2 the for-

sn? (u; ky )du—

[11(7+C3)

0

llcg

- / sn? (u; kl)du].

mula (46) should be used. For ¢; we have 0
Let us consider the case iy = 6. Suppose
I (74¢3) ; QY € (max{0, &3}, 00). The integral (36) has the form
2a U
t, = —a)T +— —_—
1=&—a) I / 1+ cn(u; k) dz
0 T+ c3 = .

51 71
224, 2 ViE=&)(z—&)(z— &)

1163
du
1+ cn(u;ky) | Using the substitution ¢ = arcsin \/(z — &3)/(z — &)
0 we transform this integral to the standard form (47). The
Suppose that ®; has three real roots &, < & <  resulting reversion of the integral in this case is the fol-
£3. The graph of the function ®;(Q;) in this case is  lowing
given in Fig. 4. This case also splits into two subcases: Q1 =6+ §3 — &2
& < Q(l) <& and&s < Q(l) CH2(Z1(’T + C3);k‘1)7
The case iy = 5. Suppose that Q) €  \here
(max{0, &1}, &2). We write (36) as

o k=225 = A — ),
rtes = o / dz §&—&
2v245 ) /(e — &)z — &2)(z — &) 8
& _ sign P dyp
We apply the substitution ¢ = arcsin \/(z — &1) /(&2 — &1) “TT /

1220w
to this integral and use the notations 0 1= kysin®e
0
& — & 0_ Q7 — &3
ki — I = +/2A _ ] (7 = arcsin .
e Q-
Now the function ()1 (7) has an infinite number of poles
of the second order, hence it is unbounded. The poles

Then our integral has the standard form

1 are found by the formula
61 ng
T+e3 =+ | —F/—m—m—m—- (47) 2m +1
h 1 — k2sin2 T = K(k1) —c3, mel.
0 1 12 ll

31
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Further we find the values 61, Q2, t1
01 = signsn (201 (7 + ¢3); k1),

at | ci(§ —§3)
= ——+ —=—II(l1(7T +c3),n1; k1)—
%= g, (NGO e k)
- H(1163,n1;k51)} +Q% = g,
&3
5 § li(T+c3) p
=67+ [ / Z(u or)
0
llc3
du
cn2(u;k1)]‘

0

An inversion of the integral (38) is fulfilled in a sim-
ilar way. This integral and the function ®5 differ only
by notations from the integral (36) and the function ®;.
Therefore, after some evident renaming, we find the ex-
pressions for (03, Q4, and t5. We number these cases
sequentially by the parameter : 5. Then we have:

ip=1 < By<0,m,m3€eC,0<Qi<m
(Q3 is bounded).
ip=2 & DBy<0,0<Q}<m <m<mns
(Q3 is bounded).
ip=3 & By<0,m<n<Q)<n
(Qs is bounded).
ip=4 & By>01m,13€C,m <Q
(@3 is unbounded).
i=5 & DBy>0,m <Q)<m<n
(Q3 is bounded).
ip=6 & By>0,m <1 <ns<Q)

(Q3 is unbounded).

The study above yield the following theorem.
Theorem 3. The motion of the particle is bounded if and
only if at the initial moment both variables ()1 and Q3 are
restricted on the right by the roots of the polynomials ®,
and P, correspondingly.

Now we give a definition of retaining potential, in-
troduced in [14].

Definition 1. A potential is named as retaining, if for ar-
bitrary initial conditions the motion of a particle in a per-
turbed field corresponding to this potential is bounded.

Thus, potential (28), where G'1, GG, are defined by
the formulae (40), (41) for As < 0 and By < 0, is re-
taining. Generally, the formulae (36), (38) are not ellip-
tic integrals, and we cannot present a solution in explicit
form. Nevertheless, the above-stated qualitative result
remains true [16].

4. Numerical examples and analysis of motions

In the examples below we consider the motion of
a particle in perturbed gravitational field of a planet with

32

spherical density distribution, which gravitational param-
eter is taken to be ;1 = 398601.3 km?/s2. The perturb-
ing force is defined by the potential (28), with G; and
(G5 calculated by the formulae (40) and (41). For con-
venience (to have no fractions), a dimensionless direc-

tion vector b for the constant force is used. While doing
calculations, this direction vector is assumed to be nor-
malized. The dimensions of parameters A_; and B_;
are [km*/s?], Ay and B are [km?/s?], A5 and B, are
[km/s2]. Calculations and construction of orbits were
performed using the Maple system with 32 digits. In each
example, for convenience of its analysis, the values of
circular and parabolic velocities v¢;r, Vpar Of Keplerian
motion are given. The perturbations under consideration
are great, they are non-typical for the Earth’s satellites.
For this reason, we do not give Keplerian elements of os-
culating orbits for the corresponding initial values. The
initial position of a particle is marked by a point on the
corresponding figure.

Example 1. Initial values of coordinates and ve-
locities of a particle:

1 = 8200 km, =z =0km, 3= 6000km,

To = 8.6 km/s, x7 =13 = 0km/s,

(Veir & 6.26 km/s,  vpe, = 8.86 km/s).

In an unperturbed case these values define an elliptic
motion.
Parameters of potential are as follows:

A_; =0.004km*/s%, A =0.06 km?/s?,

Ay =0.2-10""km/s*, B_; =0.0001 km*/s?,

By = 0.008 km?/s?, By = —0.3-10"% km/s?.

Coordinates of direction vector are b = (-1,2,1)T. In
the case under consideration the roots of polynomials ®;
and @5 are

€1~ 1478, & A 115346,

= Q)€ (&.&),
e ~ 1707, 13 ~ 31031,

9 ~ 4631

Q3 ~ 5529 = QI € (n2,m3).

Therefore, the motion is bounded. This is the case
14 =05,1p = 3.

The coordinates and velocities have been calcu-
lated during a time range, corresponding to two revolu-
tions of the particle around the attracting centre without
perturbations, that is 7 € [0, 27|, where T is calculated
by the formula

2
T=m/-=, h
™ hk7 k

Here hj is the Keplerian energy. Let's remind that L-
transformation doubles the angles at the origin of coor-
dinates.

B |)-(0|2

I
2 0

x|

. (48)
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Fig. 5. The case ia = 5, ip = 3.
Puc. 5. Cayuaii 14 = 5, ip = 3.

Note that in this example the potential is not
retaining. Nevertheless, the motion appears to be
bounded. The trajectory of the particle is shown in Fig. 5.

Example 2. Initial values of coordinates and ve-
locities of a particle:

21 = 8200 km,
To = 9.9km/s, 1 =223 =0km/s,
(Veir = 6.26 km/s,  vpq, = 8.86 km/s).

In unperturbed case the motion belongs to hyperbolic

type.
Parameters of potential are as follows:

A_; =0.004km*/s%, A =0.006 km?/s?%,
Ay = —0.2-10""km/s*, B_; = 0.0001 km*/s?,
B1 =0.008 km?/s?, By = —0.3-10"" km/s.

As A, and B- are negative we have a retaining poten-

tial. Coordinates of direction vector are b = (1,2,-1)T.
The roots of polynomials:

€0~ 2126, &5 A 122192633,

QY ~5529 = Q€ (&28),
12 & 1699, 13 ~ 81506371,

Q3 ~ 4631 = QS € (n2,m3).

Therefore, the motion is bounded. This is the case
14 = 3,1 = 3. The integration is carried out during the
time range corresponding approximately to t = 1759.74
days. The particle trajectory is shown in Fig. 6.

g = 0km, x3 = 6000 km,

Fig. 6. The case i4 = 3, ip = 3.
Puc. 6. Cnyuaii iqa = 3, ip = 3.

Example 3. Initial values of coordinates and ve-
locities of a particle are as follows:

x1 = 6000 km, xo =0km, x3= —8000km,
To = 7.9km/s, 1 =ax3=0km/s,
(Veir = 6.31 km/s,  vpqr ~ 8.93 km/s).

In an unperturbed case these values define an elliptic
motion.
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Parameters of a potential are as follows:
A_; =0.04km*/s%, Ay =0.03 km?/s?,
Ay =—0.2-10"°km/s?* B_;=0.1-10"*km*/s?,
By = —0.0003 km?/s?, By =0.3-10"* km/s?.

Here the potential is not retaining. Coordinates of direc-

tion vector are b = (1,1,1)”". The roots of polynomials
are as follows:

& =~ 2686, &3 =~ 20699,
Q(l) ~ 4423 = Q? € (52,53),
m= 32567 2,73 € Ca

QS ~ 5577 = QI >mn.

Therefore, the motion is unbounded. This is the
casetiyq = 3,ig = 4.

The integration is carried during the time range
corresponding approximately to ¢ = 3.23 days. The par-
ticle trajectory is shown in fig. 7.

Fig. 7. The case i = 3, ip = 4.
Puc. 7. Cnyuaii iqa = 3, ip = 4.

In the case of unbounded motion, to define the in-
tegration interval firstly one has to find the nearest pole
of Q1(7) and/or Q3(7) in the direction of ascending 7.
Suppose this nearest pole is at 7 = 7y. Then we choose
a small positive value ¢ and divide the segment [0, 71 —¢]
into N equal subsegments. The value N is to be se-
lected from practical reasons. The orbit should be visu-
ally a smooth curve. In our examples the value N = 100
was used. After that, the calculations by the formulae
derived above are carried out in equidistant nodes.

The following example demonstrates an applica-
tion of our formulae for testing a numerical integration
method. The original system of motion equations (30) is
considered. The Runge-Kutta-Fehlberg method of the
eighth order with automatic choice of integration step
is tested. The step is chosen by a method of the sev-
enth order. The corresponding pair of programs, imple-
mented in FORTRAN, is below noted as REK F'8(7). In-
tegration of equations (30) was performed by RK F'8(7)
with relative local error of the method ¢ = 10~!3, and
all calculations were carried out with double precision
(real*8). The gravity parameter and the units of mea-
surement are the same as above. A hypothetical parti-
cle is considered, repeatedly encountering the attracting
centre. The trajectory obtained by explicit formulae is
taken to be standard (reference). Its coordinates have
been obtained using Maple with 32 digits (in FORTRAN
this corresponds to quadruple precision (real*16)).

Example 4. Initial values of coordinates and ve-
locities of a particle are as follows:

21 = 7000 km, z2 =0km, 3= 6000km,
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Table 1
Estimation of the precision of numerical integration
Tabauia 1
Oq,emca mo4HoCcMu 1YUCl1eHH020 UHmezpupoeaHua
n t(day) O0H x 1072 4z x 10712 x5 x 10712 3 x 1072 §r x 1012
1 .3382444 1 0.2 1 1 04
10 4.9080991 2 6 12 213 10
50 24.1940313 41 729 104 1667 108
100 48.4322508 53 4399798 523748 95154 330606
500 242.7821163 294 77898 31418 151259 77206
1000 485.2955201 556 554500 332688 1067003 330900
where HO is the value at the initial moment, H at an
H . C C
By = 7.0kmls, @ = @5 = 0 kmis, arbitrary moment; z¢, r© are the values found by exact

(Veir = 6.58 km/s,  vpqr = 9.30 km/s).

In an unperturbed case we have an elliptic motion.
Parameters of retaining potential are as follows:

A1 =01km*/s? A} = —0.02km?/s?,

Ay = —0.2-10"%km/s?>, B_; = —0.004 km*/s?,
By = —0.001 km?/s?, By = —0.001 km/s?.
Coordinates of direction vector are b = (-1,-3,1)T.
The roots of polynomials ®; and ®, are as follows:

€9~ T64, &3~ 58639,

Q) ~ 4459 = QY € (&,%),
ne &~ 504, mn3 ~ 7209,

QY ~ 4761 = QY € (n2,m3).

Therefore, the motion is bounded. The case 74
i = 3.

The calculations were carried out during the
time ranges corresponding to 1, 10, 50, 100, 500, and
1000 revolutions of the particle around attracting centre
without perturbations. The trajectory of the particle for
three revolutions is shown in Fig. 8.

3,

® 25800 *

Fig. 8. The case i4 = 3, ip = 3. The motion is bounded.
Puc. 8. Cayuaii i4 = 3, ip = 3. [[BUKeHUe OTPaHUUEHO.

Table 1 contains the values, near the end of the
integration interval, of the relative error for the energy
constant § H, the coordinates of particle position vector
x;, and its absolute value r

|H® — H|
[H|

e
SH = P k| I

||

e

or

)
r
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formulae. In the second column the intervals of physical
time ¢ (in days) are given, for which numerical integration
of system (30) was carried out.

From these data we can see that if the integration
interval increases, the relative errors of H and x3 do not
decrease. For coordinates x1, x2, and absolute value r,
with n = 100, these errors increase, then they diminish,
and then increase again.

The numerical examples show efficiency of the
formulae we obtained. Besides, the theorem 3 allows
to determine, given the initial position and velocity of a
particle, whether its motion is bounded or unbounded.

Conclusion

In this paper we consider three sorts of
coordinates (regular g-coordinates, bipolar coordinates,
spherical coordinates). For each of the systems, the
forms of potentials admitting complete separation of
variables are given. Thus, the original equations for
such potentials allow integration “in the sense of
Sundman”. In a similar way one can build, for regular
g-coordinates, other coordinate systems for which
Hamiltonian has orthogonal form, and with the use of
Stackel theorem build potentials allowing the above-
mentioned integrability.

Application of these potentials is a separate and
independent problem. These potentials are of practical
importance, which approximate some real forces.

The author is grateful to professor A.Zhubr for
useful comments and discussions.
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