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Аннотация

Изучается задача разделения переменных в неко-
торых системах координат, полученных с помо-
щью L-преобразований. Даны потенциалы, до-
пускающие разделение регулярных переменных в
возмущенной задаче двух тел. Потенциалы содер-
жат произвольные гладкие функции. Рассмотрен
пример потенциала, приводящий к построению
явного решения задачи в эллиптических функ-
циях. Выделены случаи ограниченного и неогра-
ниченного движения. Приведены результаты чис-
ленных экспериментов.
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Abstract

The problem of separation of variables in some coor-
dinate systems obtained with the use of L-transfor-
mations is studied. Potentials are shown that allow
separation of regular variables in a perturbed two-
body problem. The potential contains two arbitrary
smooth functions. An example of a potential is con-
sidered allowing explicit solution of the problem in
terms of elliptic functions. The cases of bounded
and unbounded motion are shown. The results of
numerical experiments are given.

Keywords:
perturbed two-body problem, L-matrices, integrabil-
ity, elliptic functions

Introduction

The integrable cases of motion equations have
great practical value. Their significance is determined by
the fact that with the help of their solutions one can an-
alyze the motion. In a number of cases integrable prob-
lems are used to construct intermediate orbits [1,2]. One
of non-trivial examples of integrated systems is the par-
ticle motion in a Newtonian field with additional constant
acceleration vector. This had been investigated earlier
by a number of authors [3–5] and applied to analysis of
space flights with constant jet acceleration. In 1970, this
problem was studied using regular coordinates obtained
from the KS-matrix [6]. In contrast to [6], in [7] integra-
tion of the same problem was performed in regular coor-
dinates obtained with the use of L-transformations.

In the present work we consider a problem of con-
structing potentials allowing integration of the equations
of motion. The idea of our approach consists in the fol-
lowing. First, a new dynamic system is constructed, hav-
ing more degrees of freedom than the original one. To
do this, an L-transformation is applied. The theory of
L-matrices and their applications is given in [8, 9]. Us-
ing new coordinates, a general potential is selected, al-
lowing separation of variables in the Hamilton - Jacobi
equation. After this, an inverse transform to original co-
ordinates is performed, using explicit formulas. As a ba-
sis for selecting general potential with the required inte-
grability property, a well known Stackel theorem is used
[10]. This theorem gives necessary and sufficient condi-
tions for separation of variables for orthogonal Hamilton
systems, i.e. systems whose Hamiltonian contains only
squares of generalized momentums.

Note that separation of variables depends on a
choice of a coordinate system. We consider here three
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kinds of coordinate systems: regular, bipolar and spheri-
cal. The last two systems are introduced in regular coor-
dinates. Canonical equations in regular coordinates are
constructed using arbitrary L-transformations from the
initial canonical motion equations of the perturbed two-
body problem. The new equations have also orthogonal
form and are invariant with respect to L-similarity trans-
forms. In the nonperturbed case these equations do not
have singularity at the attracting center. Due to invari-
ance with respect to some perturbing potentials allow-
ing integrability, one can introduce two additional angular
parameters.

As a result of this approach the general solution of
original system is represented in parametric form, where
fictitious time plays the role of parameter, while the phys-
ical time depends on this fictitious time and initial data.
This sort of integrability is sometimes called ’Sundman
integrability’ [11].

As an example of integrable case of the perturbed
two-body problem the special kind of potential is given.
In this example the explicit solution of the problem in
terms of elliptic functions is expressed, and the criterion
of bounded motion is formulated.

Notation. Everywhere below vectors are re-
garded as column vectors, and are given in bold letters.
The sign T placed over the vector or matrix symbol de-
notes transposition. A quantity evaluated at the initial
moment of physical or fictitious time is denoted by zero
superscript: f(0) ≡ f0.

1. The separation of variables

Let us consider the Hamiltonian function of the
perturbed two-body problem

H = H(x,y) =
1

2
|y|2 − µ

r
+ V,

µ = γ(m+m0), r = |x|, (1)

where x = (x1, x2, x3)
T is the position vector of the

point of mass m with respect to the point of mass m0;
y = (y1, y2, y3)

T is the generalized impulses (yi =
ẋi, i = 1, 2, 3); γ is the gravitational constant; V =
V (x) is the perturbed potential.

For construction of the equations of motion in reg-
ular coordinates we will need the L-transformation z =
L(q)q generated by the L-matrix of the fourth order that
has the following properties:

L(q)LT (q) = LT (q)L(q) = |q|2E ∀ q ∈ R4, (2)

(L(q)p)i = (L(p)q)i, i = 1, . . . , p, (3)

(L(q)p)i = −(L(p)q)i, i = p+ 1, . . . , 4 (4)

∀ q,p ∈ R4.

Here E is the unitary matrix. The conditions (2) – (4) si-
multaneously hold only for p = 1 or p = 3. The quantity
p is the rank of L-transformation. The following theorem
can be proved [8,9].
Theorem 1. An arbitrary L-matrix generating L-trans-
formation of rank three, has the form

L(q) =

 qTK1K4

qTK2K4

qTK3K4

qTK4

 , (5)

where orthogonal skew-symmetric matrices
K1,K2,K3,K4 are equal to either

Ki = a1iU + a2iV + a3iW, i = 1, 2, 3,
K4 = a1X + a2Y + a3Z, (6)

or
Ki = a1iX + a2iY + a3iZ, i = 1, 2, 3,
K4 = a1U + a2V + a3W. (7)

The triplet of vectors ei = (a1i, a2i, a3i)
⊤, i =

1, 2, 3, forms an orthonormal basis in R3, and e =
(a1, a2, a3)

⊤ is an arbitrary unitary vector.
Conversely, the arbitrary four skew-symmetric

matrices in the form (6) or (7) define the L-matrix by
the formula (5).

In the formulae (6) and (7) there are the so-called
basic skew-symmetric orthogonal matrices

U =

 0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , V =

 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

W =

 0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , X =

 0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

Y =

 0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , Z =

 0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

ThematricesKi are called generators of theL-matrix. If
K1,K2,K3,K4 are calculated by the formulae (6) then
L(q) is called theL-matrix of the first type, otherwise the
L-matrix of the second type.

We transfer from variables t, xi, yi to the new
variables τ , qj , pj by the formulae

dt = r dτ,{
x = Λ(q)q,

y = 1
2|q|2Λ(q)p, q, p ∈ R4 (8)

where the matrix Λ(q) is found from (5) by rejection of
the fourth line:

Λ(q) =

 qTK1K4

qTK2K4

qTK3K4

 .

Consider the equations of motion in new variables
qi, pi
dqj
dτ

=
∂K
∂pj

,
dpj
dτ

= − ∂K
∂qj

, j = 0, 1, 2, 3, 4 (9)

with the Hamiltonian

K =
1

8
|p|2 + p0|q|2 + |q|2Vc(q),

Vc(q) = V
(
x(q)

)
.

(10)
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In this system the first equation with j = 0 corresponds
to transformation of time: dq0 = |q|2dτ . The variable
p0 is conjugate to q0 and has a constant value.

If
x(0) = x0, y(0) = y0 (11)

are initial conditions for the variables of the system with
the Hamiltonian (1), then, as it is proved in [12,13], with
the initial values defined by formulae{

q0(0) = 0, x0 = Λ(q0)q0,
p0(0) = −H(x0,y0), p0 = 2ΛT (q0)y0,

(12)

the solution of (9) becomes, under the transformation (8),
a solution of the system with the Hamiltonian (1) satisfy-
ing the initial conditions (11). The function qTK4p pre-
serves a constant value along solutions of (9), and with
the initial conditions from (12), this value is zero [13].
Hence, the equality qTK4p = 0 is the first integral
of this system. The variable q0 coincides with physical
time t.

Note that the systems with Hamiltonian (1) and
(10) have different orders. The choice of initial values by
the formulae (12) means that there is a special construc-
tion of the system (9) for each trajectory of the system
with Hamiltonian (1).

Let’s pick up the form of potential V , admitting di-
vision of variables. For this purpose we shall take ad-
vantage of the theorem proved by Stackel [10].
Theorem 2. The system with Hamiltonian

H =
n∑

i=1

ci(q1, . . . , qn)
(1
2
p2i + Vi(qi)

)
,

admits separation of variables in the Hamilton - Jacobi
equation if and only if there is a nonspecial matrix Φ of
order n which elements φsi depend only on qi, such as

Φc = (1, 0, . . . , 0)T , (13)

where c = (c1, c2, . . . , cn)
T .

In this case the integrals of motion will be

t− β1 =
n∑

i=1

qi∫
q0i

φ1i(qi)dqi√
fi(qi)

,

−βs =
n∑

i=1

qi∫
q0i

φsi(qi)dqi√
fi(qi)

, s = 2, . . . , n,

pi =
√
fi(qi), i = 1, . . . , n,

(14)

where fi(qi) = 2(α1φ1i(qi)+. . .+αnφni(qi)−Vi(qi));
αi, βi (i = 1, . . . , n) is constant. As q0i a simple root of
the function fi(qi) is taken.

Consider again the separation of variables in reg-
ular coordinates qi. The Hamiltonian looks like (10). In
this case we have

c1 = c2 = c3 = c4 =
1

4
,

|q|2(p0 + Vc(q)) =
1

4

4∑
s=1

Vs(qs).

The solution of system (13) will be, for example, the ma-
trix

Φ =

 4 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

The potential is defined up to a constant. As p0 is a con-
stant, we obtain

Vc(q) =
1

4|q|2
(V1(q1) + V2(q2)+

+ V3(q3) + V4(q4)). (15)

Let’s find expression for the potential Vc(q) in
original coordinates x. We notice that variables xi and r
are quadratic forms of the variables q1, q2, q3, q4. Using
theL-similarity transformation it is possible to choose an
L-matrix such as a linear combination B1x1 + B2x2 +
B3x3 that will be equal to the sum of squares of qi with
some coefficients. Note that for any L-matrix we have
r = |q|2. As Vc(q) is to be of the form (15), the required
potential in x-coordinates will be the function of the form

V (x) =
1

r
(Ar +B1x1 +B2x2 +B3x3). (16)

Let’s specify a choice ofL-matrix with the required
property. Introduce the notation

B =
√
B2

1 +B2
2 +B2

3 , bi =
Bi

B
, i = 1, 2, 3.

Suppose that theL-matrix is of the first type. That
is,K1,K2,K3 are calculated by the formula (6); for sim-
plicity we assume thatK4 = −Y . Then

Ar +B(b1x1 + b2x2 + b3x3) =

= Ar −BqT
[
(b1a11 + b2a12 + b3a13)U+

+ (b1a21 + b2a22 + b3a23)V+

+ (b1a31 + b2a32 + b3a33)W
]
Yq.

Choose the parameters aij of L-matrix in such a way
that the following equalities hold:{

b1a11 + b2a12 + b3a13 = 1,
b1a21 + b2a22 + b3a23 = 0,
b1a31 + b2a32 + b3a33 = 0.

(17)

Geometrically, the solution to this system means that
the vector i1 = (a11, a12, a13)

T coincides with b =
(b1, b2, b3)

T , and the vectors i2 = (a21, a22, a23)
T ,

i3 = (a31, a32, a33)
T are orthogonal to b. Moreover,

it follows from the structure of the L-matrix that vectors
i1, i2, and i3 form a frame. It is evident that the system
(17) has infinite number of solutions. We write its general
solution. For the first vector we have

i1 = (b1, b2, b3)
T .
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For i2 and i3 we assume, in the case b21 + b22 ̸= 0, that

i2 =
1√

b21 + b22

(
b2 cosα+ b1b3 sinα, −b1 cosα+

+ b2b3 sinα, −(b21 + b22) sinα
)T

,

i3 =
1√

b21 + b22

(
−b2 sinα+ b1b3 cosα, b1 sinα+

+ b2b3 cosα, −(b21 + b22) cosα
)T

.

If b21 + b22 = 0, then b = (0, 0, b3)
T , b3 = ±1. There-

fore, we can take the following vectors as the general
solution of the system (17):

i1 = (0, 0, b3)
T , i2 =

(
cosα, sinα, 0

)T

,

i3 = b3

(
− sinα, cosα, 0

)T

.

The quantity α ∈ [0, 2π] plays the role of an arbitrary
parameter of the general solution.

After choosing the parameters aij , the matrix
Λ(q) is determined uniquely. The solution of (17) gives

Vc(q) =
1

|q|2
(A|q|2 −BqTUYq) =

=
1

|q|2
(
(A+B)q21 + (A+B)q22+

+ (A−B)q23 + (A−B)q24
)
.

Hamiltonian in q-coordinates corresponding to this po-
tential becomes

K =
4∑

i=1

1

4

(1
2
p2i + 4p0q

2
i + 4Diq

2
i )
)
,

where D1 = D2 = A + B, D3 = D4 = A − B. The
canonical system of the equations falls into four subsys-
tems

dqi
dτ

=
1

4
pi,

dpi
dτ

= −2(p0+Di)qi, i = 1, 2, 3, 4. (18)

These systems are equivalent to four harmonious oscil-
lators. Integrals of motion are obtained either from (14),
or directly from solving (18). Thus, separation of vari-
ables for potential (16) is carried out.

For regular q-coordinates, we introduce a new
coordinate system. To preserve the canonical form of
equations of motion, we use the canonical transforma-
tion with generating function

Ψ = p1
√
Q1 cosQ2 + p2

√
Q1 sinQ2+

+ p3
√
Q3 cosQ4 + p4

√
Q3 sinQ4.

We obtain

q1 =
∂Ψ

∂p1
=

√
Q1 cosQ2,

q2 =
∂Ψ

∂p2
=

√
Q1 sinQ2,

q3 =
∂Ψ

∂p3
=

√
Q3 cosQ4,

q4 =
∂Ψ

∂p4
=

√
Q3 sinQ4,

P1 =
∂Ψ

∂Q1
=

1

2
√
Q1

(p1 cosQ2 + p2 sinQ2),

P2 =
∂Ψ

∂Q2
=

√
Q1(−p1 sinQ2 + p2 cosQ2),

P3 =
∂Ψ

∂Q3
=

1

2
√
Q3

(p3 cosQ4 + p4 sinQ4),

P4 =
∂Ψ

∂Q4
=

√
Q3(−p3 sinQ4 + p4 cosQ4).

(19)

The coordinates Q1, Q2, Q3, Q4, obtained from (19),
will be called bipolar. From the last four equations we
find p1, p2, p3, p4:

p1 = 2P1

√
Q1 cosQ2 −

P2√
Q1

sinQ2,

p2 = 2P1

√
Q1 sinQ2 +

P2√
Q1

cosQ2,

p3 = 2P3

√
Q3 cosQ4 −

P4√
Q3

sinQ4,

p4 = 2P3

√
Q3 sinQ4 +

P4√
Q3

cosQ4.

(20)

In the new variables the Hamiltonian K becomes

K =
1

8

(
4Q1P

2
1 +

P 2
2

Q1
+ 4Q3P

2
3 +

P 2
4

Q3

)
+

+ p0(Q1 +Q3) + (Q1 +Q3)V ,

where function V is expressed in terms of Qi.
Similar to the above, consider separation of vari-

ables in bipolar coordinates. In the notations of theorem
2 we now have

c1 = Q1, c2 =
1

4Q1
, c3 = Q3, c4 =

1

4Q3
.

As a solution to (13) one can take the matrix

Φ =



1
Q1

0 0 0

− 1
4Q2

1
1 0 0

− 1
Q1

0 1
Q3

0

0 0 − 1
4Q2

3
1

 . (21)

For the potential V admitting separation of variables, we
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find

V =
1

Q1 +Q3

(
Q1V 1(Q1) +

1

4Q1
V 2(Q2)+

+Q3V 3(Q3) +
1

4Q3
V 4(Q4)

)
.

In q-coordinates we obtain the form

Vc =
1

|q|2
(
(q21+q

2
2)V 1(q

2
1+q

2
2)+

V 2(arctan
q2
q1
)

4(q21 + q22)
+

+ (q23 + q24)V 3(q
2
3 + q24) +

V 4(arctan
q4
q3
)

4(q23 + q24)

)
.

Passing to x-coordinates, we use the concrete L-trans-
formation {

x1 = 2q1q4 + 2q2q3,
x2 = −2q1q3 + 2q2q4,
x3 = q21 + q22 − q23 − q24 ,

(22)

which follows from (5), (6) with K1 = V , K2 = W ,
K3 = U , K4 = −Y . Taking into account that for any
L-matrix the equality r = q21 + q22 + q23 + q24 holds, we
obtain

q23 + q24 =
1

2
(r − x3), q21 + q22 =

1

2
(r + x3).

The general solution of the first equation is

q3 =

√
r − x3

2
cosψ, q4 =

√
r − x3

2
sinψ,

ψ ∈ [0, 2π].

Then

q1 =
x1 sinψ − x2 cosψ√

2
√
r − x3

, q2 =
x1 cosψ + x2 sinψ√

2
√
r − x3

.

In a similar way we may introduce a parameter, using the
second equation,

q1 =

√
r + x3

2
cosψ1, q2 =

√
r + x3

2
sinψ1,

ψ1 ∈ [0, 2π].

As is well known [12], with L-transformation for a point
in R3 at a distance r from the origin, there corresponds
a point of some circle of radius

√
r in R4. The vari-

ables qi contain an arbitrary parameter ψ (or ψ1), giving
parametrization of the given circle. In the original coor-
dinates xi this parameter disappears. Note that

q2
q1

= tanψ1,
q4
q3

= tanψ.

We therefore assume functions V2, V4 to be constant.
Then we arrive at a potential of the form

V (x) =
1

r

[
G1((r + x3)/2) +G2((r − x3)/2)

]
, (23)

where G1, G2 are arbitrary smooth functions. The
Hamiltonian in bipolar coordinates for this potential takes

the form

K = Q1

(P 2
1

2
+ p0 +

G1(Q1)

Q1

)
+

1

4Q1

P 2
2

2
+

+Q3

(P 2
3

2
+ p0 +

G2(Q3)

Q3

)
+

1

4Q3

P 2
4

2
.

In view of the solution (21) for fi from the theorem 2 we
have

f1(Q1) = 2
(α1

Q1
− α2

4Q2
1

− α3

Q1
− p0 −

G1(Q1)

Q1

)
,

f2(Q2) = 2α2,

f3(Q3) = 2
(α3

Q3
− α4

4Q2
3

− p0 −
G2(Q3)

Q3

)
,

f4(Q4) = 2α4.

Then integrals of motion are obtained by formulas (14).
Let’s consider one more case of separation of

variables. Introduce the spherical coordinates in q-co-
ordinates

q1 =
√
Q1 cosQ2 cosQ4,

q2 =
√
Q1 sinQ2 cosQ4,

q3 =
√
Q1 cosQ3 sinQ4,

q4 =
√
Q1 sinQ3 sinQ4.

(24)

We supplement the transformation (24) to obtain a
canonical transformation of impulses

p1 = 2
√
Q1 cosQ2 cosQ4P1−

− sinQ2√
Q1 cosQ4

P2 −
cosQ2 sinQ4√

Q1
P4,

p2 = 2
√
Q1 sinQ2 cosQ4P1+

+
cosQ2√
Q1 cosQ4

P2 −
sinQ2 sinQ4√

Q1
P4,

p3 = 2
√
Q1 cosQ3 sinQ4P1−

− sinQ3√
Q1 sinQ4

P3 +
cosQ3 cosQ4√

Q1
P4,

p4 = 2
√
Q1 sinQ3 sinQ4P1+

+
cosQ3√
Q1 sinQ4

P3 +
sinQ3 cosQ4√

Q1
P4.

(25)

Then in new variables the Hamiltonian will be

K =
1

8

(
4Q1P

2
1+

P 2
2

Q1 cos2Q4
+

P 2
3

Q1 sin
2Q4

+
P 2
4

Q1

)
+

+ p0Q1 +Q1V .

In the notations of Stackel theorem we have

c1 = Q1, c2 =
1

4Q1 cos2Q4
,

c3 =
1

4Q1 sin
2Q4

, c4 =
1

4Q1
.
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In this case the solution of (13) will be the matrix

Φ =



1
Q1

0 0 0

0 1 0 − 1
cos2Q4

0 0 1 − 1
sin2Q4

1
4Q2

1
0 0 −1

 . (26)

The potential V , admitting separation of variables, can
be written as

V =
1

Q1

(
Q1V 1(Q1) +

1

4Q1 cos2Q4
V 2(Q2)+

+
1

4Q1 sin
2Q4

V 3(Q3) +
1

4Q1
V 4(Q4)

)
.

In view of relations

Q1 cos
2Q4 = q21 + q22 =

r + x3
2

,

Q1 sin
2Q4 = q23 + q24 =

r − x3
2

,

Q1 = |q|2 = r,

tan2Q4 =
q23 + q24
q21 + q22

=
1− x3/r

1 + x3/r
,

Q2 = arctan
q2
q1
, Q3 = arctan

q4
q3

following from (22), (24), and the remarks above, we ob-
tain the required form of potential in x-coordinates

V (x) =
1

r

[
G1(r) +

2A

r + x3
+

+
2B

r − x3
+

1

r
G2

(x3
r

)]
,

(27)

where G1, G2 are arbitrary smooth functions and A, B
arbitrary constants.

Now assume that a Hamiltonian (1) with the po-
tential (27) is given. Applying L-transformation (22), we
write the new Hamiltonian in q-coordinates as

K =
1

8
|p|2 + p0|q|2 +G1(|q|2)+

+
A

q21 + q22
+

B

q23 + q24
+

+
1

|q|2
G2

(q21 + q22 − q23 − q24
|q|2

)
.

Fulfilling canonical transformation (24), (25), we have

K = Q1

(P 2
1

2
+ p0 +

G1(Q1)

Q1

)
+

+
1

4Q1 cos2Q4

(P 2
2

2
+ 4A

)
+

+
1

4Q1 sin
2Q4

(P 2
3

2
+ 4B

)
+

+
1

4Q1

(P 2
4

2
+ 4G2(cos 2Q4)

)
.

Taking into consideration matrix (26), we then obtain

f1(Q1) = 2
(α1

Q1
+

α4

4Q2
1

− p0 −
G1(Q1)

Q1

)
,

f2(Q2) = 2(α2 − 4A), f3(Q3) = 2(α3 − 4B),

f4(Q4) = 2
(
− α2

cos2Q4
− α3

sin2Q4

−

− α4 − 4G2(cos 2Q4)
)
.

The integrals of motion follow from (14).
Note that using an arbitrary L-transformations al-

lows one to introduce two parameters into the poten-
tials obtained. Tthese two parameters are determined
by some constant unit vector b. For example, instead of
(27) one can write

V (x) =
1

r

[
G1(r) +

2A

r + bTx
+

+
2B

r − bTx
+

1

r
G2

(bTx

r

)]
.

2. Integration of the system of equations
in a special case

In this section we perform straightforward integra-
tion of a system with potential of the form (23) having
additional parameters. Namely, consider the potential

V = V (x) = −1

r

(
G1((r + bTx)/2)+

+G2((r − bTx)/2)
)
,

(28)

where G1, G2 are some smooth functions, and b =
(b1, b2, b3)

T an arbitrary unit vector. Note that the vec-
tor b provides two parameters in explicit form. Having
in mind only theoretical investigation (integrability prob-
lem), one can take b to be the ort along the x1-axis. On
the other hand, from the more practical point of view, in-
troducing vector b gives us additional degree of freedom
necessary for applied problems of celestial mechanics.
In such problems, the axes are usually connected with
some special directions (equinox or zenith). Therefore
the presence of the vector b in potential (28) allows one
to turn the coordinate system at one’s will.

As G1, G2, one can take, for example, functions
of the form

1

r
(r + bTx)k,

1

r
(r − bTx)k, k = 1, 2, . . .

We consider a finite linear combination

V = −1

r

N∑
k=1

(
Ak(r+bTx)k+Bk(r−bTx)k

)
. (29)

Here Ak, Bk are constants. Such a potential was con-
sidered in [16]. This case leads in general to hyperelliptic
integrals.

For an interested reader there is a problem: find a
real perturbing potential which can be approximated by
functions of the form (29). Note that the combination

−B

4r
(r + bTx)2 +

B

4r
(r − bTx)2 = −BbTx
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gives potential corresponding to a constant force. Appli-
cations of such potential were considered in [3–5].

The canonical equations of motion have the form

dxi
dt

=yi,

dyi
dt

=− µ

r3
xi −

xi
r3

(
G1((r + bTx)/2)+

+G2((r − bTx)/2)
)
+

+
1

2r

(
G′

1((r + bTx)/2)(
xi
r

+ bi)+

+G′
2(r − bTx)/2)(

xi
r

− bi)
)
,

(30)

where i = 1, 2, 3 and the sign prime indicates the deriva-
tive.

This system is the same as the equation of the
perturbed two-body problem

ẍ+
µ

r3
x =

1

2r

(
G′

1((r + bTx)/2)−

−G′
2((r − bTx)/2)

)
b+

+
1

2r2

(
G′

1((r + bTx)/2)+

+G′
2((r − bTx)/2)

)
x−

− 1

r3

(
G1((r + bTx)/2)+

+G2((r − bTx)/2)
)
x.

From this one can see that the perturbation is de-
fined by two forces. The first force is collinear to the fixed
vector b, and its module varies in dependence on vector
x. The second force is the central one.

We are going to show that the system (30) is in-
tegrable in regular variables found byL-transformations.
Transformation (8) contains an arbitraryL-matrix. A spe-
cial choice of this matrix allows one to separate the vari-
ables in the case of an arbitrary constant unitary vec-
tor b.

Let us consider the term in (10) containing Vc(q).
In the new variables this becomes

|q|2Vc(q) = −G1((|q|2+
+ qT (b1K1 + b2K2 + b3K3)K4q)/2)−

−G2((|q|2 − qT (b1K1 + b2K2 + b3K3)K4q)/2).

We assume that the L-matrix has the first type and
K4 = −Y . Then

|q|2Vc(q) = −G1((|q|2 − C)/2)−
−G2((|q|2 + C)/2), (31)

where

C = qT
[
(b1a11 + b2a12 + b3a13)U+

+ (b1a21 + b2a22 + b3a23)V+

+ (b1a31 + b2a32 + b3a33)W
]
Yq.

Let’s select parameters of L-matrixes aij from a system
(17). Then

C = qTUYq = qT

 −q1
−q2
q3
q4

 = −q21 − q22 + q23 + q24 .

Substituting the found value C in (31), we obtain

|q|2Vc(q) = −G1(q
2
1 + q22)−G2(q

2
3 + q24).

It follows that the Hamiltonian (10) is represented in the
form of the sum

K = K1 +K2,

where

K1 =
1

8
(p21 + p22) + p0(q

2
1 + q22)−G1(q

2
1 + q22),

K2 =
1

8
(p23 + p24) + p0(q

2
3 + q24)−G2(q

2
3 + q24).

As the value of p0 is constant, the system (9) splits into
two independent subsystems

dqi
dτ

=
∂K1

∂pi
,

dpi
dτ

= −∂K1

∂qi
, i = 1, 2, (32)

dqi
dτ

=
∂K2

∂pi
,

dpi
dτ

= −∂K2

∂qi
, i = 3, 4. (33)

We integrate the system (32) again. In the bipo-
lar coordinates HamiltonianK1, and accordingly the sys-
tem, have the form

K1 =
1

8

(
4Q1P

2
1 +

P 2
2

Q1

)
+ p0Q1 −G1(Q1),

dQ1

dτ
= Q1P1,

dQ2

dτ
=

P2

4Q1
,

dP1

dτ
= −1

2
P 2
1 +

P 2
2

8Q2
1

− p0 +G′
1(Q1),

dP2

dτ
= 0.

(34)

Since the Hamiltonian K1 does not explicitly de-
pend on τ and Q2, the system (34) has two integrals,

1

2
Q1P

2
1 +

P 2
2

8Q1
+ p0Q1 −G1(Q1) =

E1

8
,

P2 = c1.

(35)

Here, E1 and c1 are the constants of integration. Taking
these integrals into account, the equation for P1 may be
written in the following form

dP1

dτ
=

c21
4Q2

1

− E1

8Q1
+G′

1(Q1)−
G1(Q1)

Q1
.

Eliminating dτ from equations for P1,Q1 and integrating
the resulting equation, we find

P1 =
δ1
2Q1

√
Φ1(Q1), δ1 = ±1,

where

Φ1(Q1) = −c21 + E1Q1 + c2Q
2
1 + 8Q1G1(Q1)
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and c2 is integration constant defined by

c2 = 4(P 0
1 )

2 +
c21

(Q0
1)

2
− E1

Q0
1

− 8
G1(Q

0
1)

Q0
1

.

Due to nonnegativity ofQ1, from the first equation of the
system (34) it follows that

δ1 = signQ′
1.

Substituting the derived P1 to the first equation of (34)
we find

τ + c3 = 2δ1

Q1∫
ξ

dQ1√
Φ1(Q1)

. (36)

Using the continuity principle, the sign before the integral
(36) cannot change when Φ1(Q1) is non-zero. There-
fore, the function τ(Q1) in this case behaves monotoni-
cally. Inverting the integral (36), we obtainQ1 as a func-
tion of τ ; we substitute this function in the second equa-
tion of the system (34). Then we get

Q2 =
c1
4

τ∫
0

dτ

Q1(τ)
+ c4, c4 = Q0

2.

Here c3 and c4 are the integration constants. Thus, the
values Q1, Q2, P1 are represented as functions of τ . If
Φ1(Q1) is a polynomial, the integral (36) is, in general,
hyperelliptic.

The integration of the system (33) is done simi-
larly. As a result we find

Q4 =
c5
4

τ∫
0

dτ

Q3(τ)
+ c8, c8 = Q0

4,

P3 =
δ2
2Q3

√
Φ2(Q3), δ2 = signQ′

3, P4 = c5,

where

Φ2(Q3) = −c25 + E2Q3 + c6Q
2
3 + 8Q3G2(Q3).

Here c6 and E2 are the integration constants defined by
the equalities

c6 = 4(P 0
3 )

2 +
c25

(Q0
3)

2
− E2

Q0
3

− 8
G2(Q

0
3)

Q0
3

,

E2

8
=

1

2
Q3P

2
3 +

P 2
4

8Q3
+ p0Q3 −G2(Q3). (37)

The functionQ3(τ) is found by a reversion of the integral

τ + c7 = 2δ2

Q3∫
η

dQ3√
Φ2(Q3)

. (38)

Thus, the valuesQ3,Q4, and P3 are also determined as
functions of the variable τ . The lower limits ξ and η in
integrals (36) and (38) are chosen according to the loca-
tion of Q1 and Q3 with respect to the roots of functions
Φ1(Q1) and Φ2(Q3), respectively.

The formulae of inverse transformation

Q1 = q21 + q22 , tanQ2 =
q2
q1 ,

Q3 = q23 + q24 , tanQ4 =
q4
q3 ,

P1 =
q1p1 + q2p2
2(q21 + q22)

, P2 = −q2p1 + q1p2,

P3 =
q3p3 + q4p4
2(q23 + q24)

, P4 = −q4p3 + q3p4

allow to define initial values of the variables Qi and Pi

(i = 1, 2, 3, 4).
The values of integration constants c1, c2, c3, c4,

and E1 are determined by the initial values of Q1, Q2,
P1, P2. These five constant values are connected with
each other by the integral (35). In the same way, the
constant values c5, c6, c7, c8, and E2 are connected by
the integral (37) and are defined by initial values of Q3,
Q4, P3, and P4. From p0 = −H(x0,y0) we also find
relation E1 +E2 = 8µ. One has to add the above rela-
tions for c2 and c6 to these connections. Besides, as the
bilinear relation qTK4p = 0 is the integral of (9), in our
case we have

qT (−Y )p = −q2p1 + q1p2 + q4p3 − q3p4 = 0.

Therefore the equality P2 = P4, or equivalently c1 = c5,
also holds.

Applying further the first four formulas (19) and
(20), we find qi, pi (i = 1, 2, 3, 4) as functions of τ . Fi-
nally, integrating the two remaining equations of (9), we
obtain p0 = −H(x0,y0) and physical time expressed
through τ ,

t = q0 =

τ∫
0

|q|2dτ + c9 = t1 + t2, (39)

where

t1 =

τ∫
0

Q1(τ)dτ, t2 =

τ∫
0

Q3(τ)dτ, c9 = 0.

Thus, the system (9) is completely integrated and we
can, at least locally, find a required trajectory. Here it
is necessary to note, that if perturbing potentialsG1,G2

in (30) are analytic, then, as it is known from a course
of the differential equations, the solution of the problem
will also be analytic. Let us suppose that the local in-
version of integrals (36), (38) appeared to be a globally
determined function. In this case we can conclude, by
uniqueness of analytic continuation, that this inversion
gives not only local, but also global solution of the prob-
lem (30). This is the case when functions G1, G2 are
polynomials of degree two or three. In this case (36) and
(38) are the elliptic integrals, for which inversion we have
the well developed technique of elliptic functions at our
disposal; thus, we have found the solution of (30) in ex-
plicit form.
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3. Inversion of the integral in elliptic case

In this section we consider one case of functions
G1 and G2, which reduces to elliptic integrals. Other
cases have been studied in [7, 14, 16, 17]. Let us take
the functions G1 and G2

G1 =
A−1

r + bTx
+A1(r+bTx)+A2(r+bTx)2, (40)

G2 =
B−1

r − bTx
+B1(r−bTx)+B2(r−bTx)2, (41)

where A−1, A1, A2, B−1, B1, and B2 are the parame-
ters of the potential. Then for the functions Φ1(Q1) and
Φ2(Q3) in (36) and (38) we have the expressions

Φ1(Q1) = ĉ1 + E1Q1 + c2Q
2
1 + 32A2Q

3
1,

Φ2(Q3) = ĉ5 + E2Q3 + c6Q
2
3 + 32B2Q

3
3.

Here ĉ1 = −c21 + 4A−1, c2 = 16A1 − 8p0, ĉ5 =
−c25 + 4B−1, c6 = 16B1 − 8p0.

Firstly, let us note that the variables Q1 and Q3

are non-negative by definition, and that from integrals
(36) and (38) it follows that the ranges of these variables
are determined by the inequalities

Φ1(Q1) > 0, Φ2(Q3) > 0. (42)

Let us reverse the integral (36). The number of roots
of the polynomial Φ1 and their positions depend on the
value of A2. With A2 = 0 the degree of Φ1(Q1) equals
to two. The integral (36) is found in elementary functions,
so this case is not considered here. We distinguish two
cases: A2 < 0, A2 > 0. Let’s note the roots of Φ1(Q1)
as ξ1, ξ2, ξ3. The cases under consideration will be se-
quentially numbered by parameter iA.

I. Assume that A2 < 0. In this case Φ1(−∞) >
0, Φ1(+∞) < 0. The value Φ1(0) = ĉ1 may be both
positive and negative. For actual motion there should
be at least one positive root. The qualitatively different
cases of the graph of Φ1(Q1) are shown in Fig. 1 and
2. In the case of three real roots (Fig. 2), the axis of
ordinates goes between ξ1, ξ2 if ĉ1 < 0, and left with
respect to ξ1 or between ξ2, ξ3 if ĉ1 > 0.

Fig. 1. The graph of Φ1(Q1). The case A2 < 0.
Рис. 1. График Φ1(Q1). Случай A2 < 0.

The case iA = 1. Suppose that Φ1 has one real
root ξ1, and that Q0

1 ∈ (0, ξ1) (Fig. 1). Let’s write the
integral (36) in the form

τ + c3 =
δ1

2
√
−2A2

Q1∫
ξ1

dz√
(ξ1 − z)(z2 + bz + c)

,

where the square trinomial z2+ bz+ c has no real roots
and is positive for all z, and

b = ξ1 +
c2

32A2
, c = bξ1 +

E1

32A2
(c > 0). (43)

Apply the substitution

z = ξ1 − a
1− cosφ

1 + cosφ
, a =

√
ξ21 + bξ1 + c

in the integral and put the notations

φ1 = 2arctan

√
ξ1 −Q1

a
, k21 =

1

2

(
1 +

ξ1 + b/2

a

)
,

l1 = 2
√
−2aA2.

Fig. 2. The graph of Φ1(Q1). The case A2 < 0.
Рис. 2. График Φ1(Q1). Случай A2 < 0.

Then we derive

τ + c3 = −δ1
l1

φ1∫
0

dφ√
1− k21 sin

2 φ
. (44)

Putting here τ = 0, we find an integration constant c3:

c3 = −signP 0
1

l1

φ0
1∫

0

dφ√
1− k21 sin

2 φ
,

φ0
1 = 2arctan

√
ξ1 −Q0

1

a
.

Check that k21 < 1. As z2 + bz + c has no real
roots, we have b2 − 4c < 0. Therefore,(
ξ1 +

b

2

)2

< ξ21 + bξ1 + c = a2 ⇒
∣∣∣ξ1 + b/2

a

∣∣∣ < 1.

Hence, |k1| < 1. Reversing the integral (44) derived
above, we come to the function

Q1 = ξ1 + a− 2a

1 + cn(l1(τ + c3); k1)
.

It is easy to see that for Q1 ∈ (0, ξ1) the denominator
cn(u) + 1 ̸= 0. Calculating the derivative of Q1, we get
δ1 = − sign sn (l1(τ + c3); k1). For the variableQ2 we
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find

Q2 =
c1τ

4(ξ1 + a)
+

+
ac1

2l1(ξ21 − a2)

[ l1(τ+c3)∫
0

du

1 + n1 cn(u; k1)
−

−
l1c3∫
0

du

1 + n1 cn(u; k1)

]
+Q0

2,

n1 = 1 +
2a

ξ1 − a
.

Note that
n21

n21 − 1
− k21 =

c

4aξ1
> 0.

Therefore for calculating the integral of (1 +
n1 cn(u; k1))

−1 we apply the formula (341.03) [15]

u∫
0

du

1 + n cn(u; k)
=

=
1

1− n2

[
Π
(
u,

n2

n2 − 1
; k
)
− ng1

]
,

n2 ̸= 1, (45)

with

g1(u) =
1

2

√
n2 − 1

k2 + k′2n2
×

× ln

∣∣∣∣∣
√
k2 + k′2n2 sn(u; k) +

√
n2 − 1 dn(u; k)√

k2 + k′2n2 sn(u; k)−
√
n2 − 1 dn(u; k)

∣∣∣∣∣,
k′2 = 1− k2.

Here we note the elliptic integral of the third kind
as

Π(u, n; k) ≡
u∫

0

dv

1− nsn2(v; k)
.

For t1 we have

t1 = (ξ1 + a)τ − 2a

l1

[ l1(τ+c3)∫
0

du

1 + cn(u; k1)
−

−
l1c3∫
0

du

1 + cn(u; k1)

]
.

The integral of (1 + cn(u; k1))
−1 is calculated by the

formula (341.53) [15]
u∫

0

dv

1± cn(v; k)
= u−E(u)± dn(u; k) sn(u; k)

1± cn(u; k)
, (46)

where E(u) = E(φ; k) is incomplete elliptic integral of
the second kind (φ = amu).

The case iA = 2. Suppose that Φ1(Q1) has
three real roots 0 < ξ1 < ξ2 < ξ3, and Q0

1 ∈ (0, ξ1).
Let’s write (36) as

τ + c3 =
δ1

2
√
−2A2

ξ1∫
Q1

dz√
(ξ1 − z)(ξ2 − z)(ξ3 − z)

.

Making the substitutionφ = arcsin
√
(ξ1 − z)/(ξ2 − z)

and reversing the resulting integral, we find

Q1 = ξ2 −
(ξ2 − ξ1)

cn2(l1(τ + c3); k1)
,

where

k1 =

√
ξ3 − ξ2
ξ3 − ξ1

, l1 =
√
−2A2(ξ3 − ξ1),

c3 =
signP 0

1

l1

φ0
1∫

0

dφ√
1− k21 sin

2 φ
,

φ0
1 = arcsin

√
ξ1 −Q0

1

ξ2 −Q0
1

.

Now we calculate δ1. We differentiate Q1 and use the
formula of double argument for elliptic sine. We have

Q′
1=2l1(ξ3−ξ2)cn−3(u; k1)(−1) sn(u; k1)dn(u; k1)=

= −l1(ξ3−ξ2)cn−4(u; k1)(1−k21sn4(u; k1))sn(2u; k1),

where the notation u = l1(τ + c3) is introduced for
brevity. Therefore,

δ1 = signQ′
1 = − sign sn (2l1(τ + c3); k1).

Now we find Q2

Q2 =
c1τ

4ξ2
+
c1(ξ2 − ξ1)

4l1ξ1ξ2

[
Π(l1(τ + c3), n1; k1)−

−Π(l1c3, n1; k1)
]
+Q0

2, n1 =
ξ2
ξ1
.

For the value of physical time, corresponding to the vari-
able Q1, we have

t1 = ξ2τ+
ξ1 − ξ2
l1

[l1(τ+c3)∫
0

du

cn2(u; k1)
−

l1c3∫
0

du

cn2(u; k1)

]
,

where the integral of cn−2(u; k1) is calculated by the for-
mula (313.02) [15]

u∫
0

dv

cn2(v; k)
=

1

1− k2

(
(1− k2)u−

− E(u) +
dn(u; k) sn(u; k)

cn(u; k)

)
.
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The case iA = 3. The polynomial Φ1(Q1)
has three real roots ξ1 < ξ2 < ξ3, and Q0

1 ∈
(max{0, ξ2}, ξ3). Let us write (36) as

τ + c3 =
δ1

2
√
−2A2

Q1∫
ξ3

dz√
(z − ξ1)(z − ξ2)(ξ3 − z)

.

The reduction of this integral to the standard
form (44) is carried out by the substitution φ =
arcsin

√
(ξ3 − z)/(ξ3 − ξ2). The result of reversion

can be presented in the form

Q1 = ξ3 + (ξ2 − ξ3)sn
2(l1(τ + c3); k1),

where the following notations are used

k1 =

√
ξ3 − ξ2
ξ3 − ξ1

, l1 =
√

−2A2(ξ3 − ξ1),

c3 = −signP 0
1

l1

φ0
1∫

0

dφ√
1− k21 sin

2 φ
,

φ0
1 = arcsin

√
ξ3 −Q0

1

ξ3 − ξ2
.

For δ1 we find δ1 = − sign sn (2l1(τ + c3); k1). Substi-
tute Q1 in the formulae for Q2 and t1. We find

Q2 =
c1

4l1ξ3

[
Π(l1(τ + c3), n1; k1)−

−Π(l1c3, n1; k1)
]
+Q0

2,

t1 = ξ3τ +
ξ2 − ξ3
l1

[ l1(τ+c3)∫
0

sn2(u; k1)du−

−
l1c3∫
0

sn2(u; k1)du

]
.

The integral of squared elliptic sine is calculated by the
formula [15]

u∫
0

sn2(v; k)dv =
1

k2
(u− E(u)).

II. Assume further that A2 > 0. Now we have
Φ1(−∞) < 0, Φ1(+∞) > 0, and Φ1(0) = ĉ1. The
qualitatively different cases of the graph Φ1(Q1) are
shown in Fig. 3 and 4.

The case iA = 4. The polynomial Φ1(Q1) has
one real root ξ1 and, accordingly, Q1(0) > max{0, ξ1}.
The graph of Φ1(Q1) in this case is shown in Fig. 3. Let
us write the integral (36) as

τ + c3 =
δ1

2
√
2A2

Q1∫
ξ1

dz√
(z − ξ1)(z2 + bz + c)

,

where the square trinomial z2 + bz + c > 0 for all z.
The coefficients b and c are found by the formulae (43).
Applying the substitution

z = ξ1 + a
1− cosφ

1 + cosφ
, a =

√
ξ21 + bξ1 + c

and reversing the resulting integral, we come to the func-
tion

Q1 = ξ1 − a+
2a

1 + cn(l1(τ + c3); k1)
,

where

k21 =
1

2

(
1− ξ1 + b/2

a

)
, l1 = 2

√
2aA2.

c3 =
signP 0

1

l1

φ0
1∫

0

dφ√
1− k21 sin

2 φ
,

φ0
1 = 2arctan

√
Q0

1 − ξ1
a

.

As above, one can show that k21 < 1. The re-
sulting functionQ1(τ) is unbounded, as it has an infinite
number of poles on real straight line, which are found by
the formula

τ =
4m+ 2

l1
K(k1)− c3, m ∈ Z.

Fig. 3. The graph Φ1(Q1). Case A2 > 0.
Рис. 3. График Φ1(Q1). Случай A2 > 0.

Fig. 4. The graph Φ1(Q1). Case A2 > 0.
Рис. 4. График Φ1(Q1). Случай A2 > 0.
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Further we find that δ1 = sign sn (l1(τ + c3); k1).
For variable Q2 we have

Q2 =
c1τ

4(ξ1 − a)
−

− ac1
2l1(ξ21 − a2)

[ l1(τ+c3)∫
0

du

1 + n1 cn(u; k1)
−

−
l1c3∫
0

du

1 + n1 cn(u; k1)

]
+Q0

2,

n1 = 1− 2a

ξ1 + a
.

Note that

n21
n21 − 1

= 1 +
1

n21 − 1
= −(ξ1 − a)2

4aξ1
< 0 < k21.

Therefore for calculating the integral of the function (1+
n1 cn(u; k1))

−1 the formula (45) is to be applied with

g1 =

√
1− n2

k2 + k′2n2
arctan

[√
k2 + k′2n2

1− n2
sn(u; k)

dn(u; k)

]
,

k′2 = 1− k2.

If ξ1 = 0 then n1 = −1, and for calculating Q2 the for-
mula (46) should be used. For t1 we have

t1 = (ξ1 − a)τ +
2a

l1

[ l1(τ+c3)∫
0

du

1 + cn(u; k1)
−

−
l1c3∫
0

du

1 + cn(u; k1)

]
.

Suppose that Φ1 has three real roots ξ1 < ξ2 <
ξ3. The graph of the function Φ1(Q1) in this case is
given in Fig. 4. This case also splits into two subcases:
ξ1 < Q0

1 < ξ2 and ξ3 < Q0
1.

The case iA = 5. Suppose that Q0
1 ∈

(max{0, ξ1}, ξ2). We write (36) as

τ + c3 =
δ1

2
√
2A2

Q1∫
ξ1

dz√
(z − ξ1)(z − ξ2)(z − ξ3)

.

Weapply the substitutionφ = arcsin
√
(z − ξ1)/(ξ2 − ξ1)

to this integral and use the notations

k1 =

√
ξ2 − ξ1
ξ3 − ξ1

, l1 =
√
2A2(ξ3 − ξ1).

Then our integral has the standard form

τ + c3 =
δ1
l1

φ1∫
0

dφ√
1− k21 sin

2 φ
. (47)

Reversing (47) and using the inverse substitution, we
find the required function

Q1 = ξ1 + (ξ2 − ξ1)sn
2(l1(τ + c3); k1),

where

c3 =
signP 0

1

l1

φ0
1∫

0

dφ√
1− k21 sin

2 φ
,

φ0
1 = arcsin

√
Q0

1 − ξ1
ξ2 − ξ1

.

One can show that δ1 = sign sn (2l1(τ + c3); k1). For
Q2 we find

Q2 =
c1

4l1ξ1

[
Π(l1(τ + c3), n1; k1)−

−Π(l1c3, n1; k1)
]
+Q0

2, n1 = 1− ξ2
ξ1
.

For the first summand of physical time t in (39) we have

t1 = ξ1τ +
ξ2 − ξ1
l1

[ l1(τ+c3)∫
0

sn2(u; k1)du−

−
l1c3∫
0

sn2(u; k1)du

]
.

Let us consider the case iA = 6. Suppose
Q0

1 ∈ (max{0, ξ3},∞). The integral (36) has the form

τ + c3 =
δ1

2
√
2A2

Q1∫
ξ3

dz√
(z − ξ1)(z − ξ2)(z − ξ3)

.

Using the substitution φ = arcsin
√

(z − ξ3)/(z − ξ2)
we transform this integral to the standard form (47). The
resulting reversion of the integral in this case is the fol-
lowing

Q1 = ξ2 +
ξ3 − ξ2

cn2(l1(τ + c3); k1)
,

where

k1 =

√
ξ2 − ξ1
ξ3 − ξ1

, l1 =
√
2A2(ξ3 − ξ1),

c3 =
signP 0

1

l1

φ0
1∫

0

dφ√
1− k21 sin

2 φ
,

φ0
1 = arcsin

√
Q0

1 − ξ3
Q0

1 − ξ2
.

Now the function Q1(τ) has an infinite number of poles
of the second order, hence it is unbounded. The poles
are found by the formula

τ =
2m+ 1

l1
K(k1)− c3, m ∈ Z.
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Further we find the values δ1, Q2, t1
δ1 = sign sn (2l1(τ + c3); k1),

Q2 =
c1τ

4ξ2
+
c1(ξ2 − ξ3)

4l1ξ2ξ3

[
Π(l1(τ + c3), n1; k1)−

−Π(l1c3, n1; k1)
]
+Q0

2, n1 =
ξ2
ξ3
,

t1 = ξ2τ +
ξ3 − ξ2
l1

[ l1(τ+c3)∫
0

du

cn2(u; k1)
−

−
l1c3∫
0

du

cn2(u; k1)

]
.

An inversion of the integral (38) is fulfilled in a sim-
ilar way. This integral and the function Φ2 differ only
by notations from the integral (36) and the function Φ1.
Therefore, after some evident renaming, we find the ex-
pressions for Q3, Q4, and t2. We number these cases
sequentially by the parameter iB . Then we have:

iB = 1 ⇔ B2 < 0, η2, η3 ∈ C, 0 < Q0
3 < η1

(Q3 is bounded).

iB = 2 ⇔ B2 < 0, 0 < Q0
3 < η1 < η2 < η3

(Q3 is bounded).

iB = 3 ⇔ B2 < 0, η1 < η2 < Q0
3 < η3

(Q3 is bounded).

iB = 4 ⇔ B2 > 0, η2, η3 ∈ C, η1 < Q0
3

(Q3 is unbounded).

iB = 5 ⇔ B2 > 0, η1 < Q0
3 < η2 < η3

(Q3 is bounded).

iB = 6 ⇔ B2 > 0, η1 < η2 < η3 < Q0
3

(Q3 is unbounded).

The study above yield the following theorem.
Theorem 3. The motion of the particle is bounded if and
only if at the initial moment both variablesQ1 andQ3 are
restricted on the right by the roots of the polynomials Φ1

and Φ2, correspondingly.
Now we give a definition of retaining potential, in-

troduced in [14].
Definition 1. A potential is named as retaining, if for ar-
bitrary initial conditions the motion of a particle in a per-
turbed field corresponding to this potential is bounded.

Thus, potential (28), whereG1,G2 are defined by
the formulae (40), (41) for A2 < 0 and B2 < 0, is re-
taining. Generally, the formulae (36), (38) are not ellip-
tic integrals, and we cannot present a solution in explicit
form. Nevertheless, the above-stated qualitative result
remains true [16].

4. Numerical examples and analysis of motions

In the examples below we consider the motion of
a particle in perturbed gravitational field of a planet with

spherical density distribution, which gravitational param-
eter is taken to be µ = 398601.3 km3/s2. The perturb-
ing force is defined by the potential (28), with G1 and
G2 calculated by the formulae (40) and (41). For con-
venience (to have no fractions), a dimensionless direc-
tion vector b̂ for the constant force is used. While doing
calculations, this direction vector is assumed to be nor-
malized. The dimensions of parameters A−1 and B−1

are [km4/s2], A1 and B1 are [km2/s2], A2 and B2 are
[km/s2]. Calculations and construction of orbits were
performed using theMaple systemwith 32 digits. In each
example, for convenience of its analysis, the values of
circular and parabolic velocities vcir, vpar of Keplerian
motion are given. The perturbations under consideration
are great, they are non-typical for the Earth’s satellites.
For this reason, we do not give Keplerian elements of os-
culating orbits for the corresponding initial values. The
initial position of a particle is marked by a point on the
corresponding figure.

Example 1. Initial values of coordinates and ve-
locities of a particle:

x1 = 8200 km, x2 = 0 km, x3 = 6000 km,

ẋ2 = 8.6 km/s, ẋ1 = ẋ3 = 0 km/s,

(vcir ≈ 6.26 km/s, vpar ≈ 8.86 km/s).

In an unperturbed case these values define an elliptic
motion.

Parameters of potential are as follows:

A−1 = 0.004 km4/s2, A1 = 0.06 km2/s2,

A2 = 0.2 · 10−7 km/s2, B−1 = 0.0001 km4/s2,

B1 = 0.008 km2/s2, B2 = −0.3 · 10−4 km/s2.

Coordinates of direction vector are b̂ = (−1, 2, 1)T . In
the case under consideration the roots of polynomialsΦ1

and Φ2 are

ξ1 ≈ 1478, ξ2 ≈ 115346,

Q0
1 ≈ 4631 ⇒ Q0

1 ∈ (ξ1, ξ2),

η2 ≈ 1707, η3 ≈ 31031,

Q0
3 ≈ 5529 ⇒ Q0

3 ∈ (η2, η3).

Therefore, the motion is bounded. This is the case
iA = 5, iB = 3.

The coordinates and velocities have been calcu-
lated during a time range, corresponding to two revolu-
tions of the particle around the attracting centre without
perturbations, that is τ ∈ [0, 2T ], where T is calculated
by the formula

T = π

√
− 2

hk
, hk =

|ẋ0|2

2
− µ

|x0|
. (48)

Here hk is the Keplerian energy. Let’s remind that L-
transformation doubles the angles at the origin of coor-
dinates.

32



Известия Коми научного центра УрО РАН. № 6(52). Серия «Физико-математические науки». Сыктывкар, 2021

Fig. 5. The case iA = 5, iB = 3.
Рис. 5. Случай iA = 5, iB = 3.

Note that in this example the potential is not
retaining. Nevertheless, the motion appears to be
bounded. The trajectory of the particle is shown in Fig. 5.

Example 2. Initial values of coordinates and ve-
locities of a particle:

x1 = 8200 km, x2 = 0 km, x3 = 6000 km,

ẋ2 = 9.9 km/s, ẋ1 = ẋ3 = 0 km/s,

(vcir ≈ 6.26 km/s, vpar ≈ 8.86 km/s).

In unperturbed case the motion belongs to hyperbolic
type.

Parameters of potential are as follows:

A−1 = 0.004 km4/s2, A1 = 0.006 km2/s2,

A2 = −0.2 · 10−7 km/s2, B−1 = 0.0001 km4/s2,

B1 = 0.008 km2/s2, B2 = −0.3 · 10−7 km/s2.

As A2 and B2 are negative we have a retaining poten-
tial. Coordinates of direction vector are b̂ = (1, 2,−1)T .
The roots of polynomials:

ξ2 ≈ 2126, ξ3 ≈ 122192633,

Q0
1 ≈ 5529 ⇒ Q0

1 ∈ (ξ2, ξ3),

η2 ≈ 1699, η3 ≈ 81506371,

Q0
3 ≈ 4631 ⇒ Q0

3 ∈ (η2, η3).

Therefore, the motion is bounded. This is the case
iA = 3, iB = 3. The integration is carried out during the
time range corresponding approximately to t = 1759.74
days. The particle trajectory is shown in Fig. 6.

Fig. 6. The case iA = 3, iB = 3.
Рис. 6. Случай iA = 3, iB = 3.

Example 3. Initial values of coordinates and ve-
locities of a particle are as follows:

x1 = 6000 km, x2 = 0 km, x3 = −8000 km,

ẋ2 = 7.9 km/s, ẋ1 = ẋ3 = 0 km/s,

(vcir ≈ 6.31 km/s, vpar ≈ 8.93 km/s).

In an unperturbed case these values define an elliptic
motion.

Parameters of a potential are as follows:

A−1 = 0.04 km4/s2, A1 = 0.03 km2/s2,

A2 = −0.2 · 10−5 km/s2, B−1 = 0.1 · 10−4 km4/s2,

B1 = −0.0003 km2/s2, B2 = 0.3 · 10−4 km/s2.

Here the potential is not retaining. Coordinates of direc-
tion vector are b̂ = (1, 1, 1)T . The roots of polynomials
are as follows:

ξ2 ≈ 2686, ξ3 ≈ 20699,

Q0
1 ≈ 4423 ⇒ Q0

1 ∈ (ξ2, ξ3),

η1 ≈ 3256, η2, η3 ∈ C,

Q0
3 ≈ 5577 ⇒ Q0

3 > η1.

Therefore, the motion is unbounded. This is the
case iA = 3, iB = 4.

The integration is carried during the time range
corresponding approximately to t = 3.23 days. The par-
ticle trajectory is shown in fig. 7.

Fig. 7. The case iA = 3, iB = 4.
Рис. 7. Случай iA = 3, iB = 4.

In the case of unbounded motion, to define the in-
tegration interval firstly one has to find the nearest pole
of Q1(τ) and/or Q3(τ) in the direction of ascending τ .
Suppose this nearest pole is at τ = τ1. Then we choose
a small positive value ε and divide the segment [0, τ1−ε]
into N equal subsegments. The value N is to be se-
lected from practical reasons. The orbit should be visu-
ally a smooth curve. In our examples the valueN = 100
was used. After that, the calculations by the formulae
derived above are carried out in equidistant nodes.

The following example demonstrates an applica-
tion of our formulae for testing a numerical integration
method. The original system of motion equations (30) is
considered. The Runge-Kutta-Fehlberg method of the
eighth order with automatic choice of integration step
is tested. The step is chosen by a method of the sev-
enth order. The corresponding pair of programs, imple-
mented in FORTRAN, is below noted as RKF8(7). In-
tegration of equations (30) was performed byRKF8(7)
with relative local error of the method ε = 10−13, and
all calculations were carried out with double precision
(real*8). The gravity parameter and the units of mea-
surement are the same as above. A hypothetical parti-
cle is considered, repeatedly encountering the attracting
centre. The trajectory obtained by explicit formulae is
taken to be standard (reference). Its coordinates have
been obtained using Maple with 32 digits (in FORTRAN
this corresponds to quadruple precision (real*16)).

Example 4. Initial values of coordinates and ve-
locities of a particle are as follows:

x1 = 7000 km, x2 = 0 km, x3 = 6000 km,
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Table 1
Estimation of the precision of numerical integration

Таблица 1
Оценка точности численного интегрирования

n t(day) δH × 10−12 δx1 × 10−12 δx2 × 10−12 δx3 × 10−12 δr × 10−12

1 .3382444 1 0.2 1 1 0.4
10 4.9080991 2 6 12 213 10
50 24.1940313 41 729 104 1667 108

100 48.4322508 53 4399798 523748 95154 330606
500 242.7821163 294 77898 31418 151259 77206

1000 485.2955201 556 554500 332688 1067003 330900

ẋ2 = 7.9 km/s, ẋ1 = ẋ3 = 0 km/s,

(vcir ≈ 6.58 km/s, vpar ≈ 9.30 km/s).

In an unperturbed case we have an elliptic motion.
Parameters of retaining potential are as follows:

A−1 = 0.1 km4/s2, A1 = −0.02 km2/s2,

A2 = −0.2 · 10−5 km/s2, B−1 = −0.004 km4/s2,

B1 = −0.001 km2/s2, B2 = −0.001 km/s2.

Coordinates of direction vector are b̂ = (−1,−3, 1)T .
The roots of polynomials Φ1 and Φ2 are as follows:

ξ2 ≈ 764, ξ3 ≈ 58639,

Q0
1 ≈ 4459 ⇒ Q0

1 ∈ (ξ2, ξ3),

η2 ≈ 504, η3 ≈ 7209,

Q0
3 ≈ 4761 ⇒ Q0

3 ∈ (η2, η3).

Therefore, the motion is bounded. The case iA = 3,
iB = 3.

The calculations were carried out during the
time ranges corresponding to 1, 10, 50, 100, 500, and
1000 revolutions of the particle around attracting centre
without perturbations. The trajectory of the particle for
three revolutions is shown in Fig. 8.

Fig. 8. The case iA = 3, iB = 3. The motion is bounded.
Рис. 8. Случай iA = 3, iB = 3. Движение ограничено.

Table 1 contains the values, near the end of the
integration interval, of the relative error for the energy
constant δH , the coordinates of particle position vector
xi, and its absolute value r

δH =
|H0 −H|

|H|
, δxi =

|xi − xci |
|xi|

, i = 1, 2, 3,

δr =
|r − rc|

r
,

where H0 is the value at the initial moment, H at an
arbitrary moment; xci , r

c are the values found by exact
formulae. In the second column the intervals of physical
time t (in days) are given, for which numerical integration
of system (30) was carried out.

From these data we can see that if the integration
interval increases, the relative errors ofH and x3 do not
decrease. For coordinates x1, x2, and absolute value r,
with n = 100, these errors increase, then they diminish,
and then increase again.

The numerical examples show efficiency of the
formulae we obtained. Besides, the theorem 3 allows
to determine, given the initial position and velocity of a
particle, whether its motion is bounded or unbounded.

Conclusion

In this paper we consider three sorts of
coordinates (regular q-coordinates, bipolar coordinates,
spherical coordinates). For each of the systems, the
forms of potentials admitting complete separation of
variables are given. Thus, the original equations for
such potentials allow integration “in the sense of
Sundman”. In a similar way one can build, for regular
q-coordinates, other coordinate systems for which
Hamiltonian has orthogonal form, and with the use of
Stackel theorem build potentials allowing the above-
mentioned integrability.

Application of these potentials is a separate and
independent problem. These potentials are of practical
importance, which approximate some real forces.

The author is grateful to professor A.Zhubr for
useful comments and discussions.
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