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AnHoranusa

OTKpbITasd KBaHTOBasg [AUHAMHUKA B MapKOBCKOM
IPUGIMIKEHUN OMMCHIBAETCA OCHOBHBIM yPaBHEHUEM
JIuanonana. Juuoamuka Jluugbiamga saMKHYyTa B aJi-
re6pe JIu A = su(n), r.e. mumeer su(n) cummerpuo.
Msbr roBopuM, uTO ypaBHeHue JInHAOJIama HOmycKa-
eT PeAyKINI0 CUMMETPUU, €CJI OHO MMeeT MHBapu-
aHTHOe BeKTOpHoe moampocrpaHcTBo Ag C A ¢ Jlu-
anrebpanuecKoOH CTPYKTYpoii. Pegykiinyu cuMMeTpun
OTPAaHUYUBAIOT AUHAMUKY HA MEHBIITHE OAIIPOCTPAH-
CTBa, KOTOPBIE AOMOJHUTEIbHO ABISIOTCA ajaredpaMmu
Jlu.

B 3ameTKe ommcaHbl TPUBHUAJLHBIE PEIYKIIUHU,
OCHOBaHHBIE Ha INPUBOAUMOCTH TaMMJIBTOHUAHA WU
omeparopoB Jlmagdmaza. IlpexcraBieHbl ITpUMEPHI
HeTPUBUAJbHBIX PEeAYKIIUII B mpejaesie 6eCKOHEUHOMN
TeMIlepaTyphl U penykinuii MaiiopaHBI ¢ COXpaHEeHU-
em ueTHocTu. O6GCy:KIal0TCA IPUTOIKEHUA K OTKPBI-
TOM CIIMHOBOI AUHaAMUKE.

Karouersie cioBa:
OMKpbLMble K8AHMOBbLE CUCMeMbl, YpasHeHue JIuno-
onada, peyKyus cummempuu

Abstract

Open quantum dynamics in the Markovian approx-
imation is described by the Lindblad master equa-
tion. The Lindbladian dynamics is closed in the Lie
algebra A = su(n), i.e. it has su(n) symmetry.
We say that the Lindblad equation admits a symme-
try reduction if it has an invariant vector subspace
Ao C A with the Lie algebraic structure. Symmetry
reductions restrict dynamics to smaller subspaces
that additionally are Lie algebras.

In these notes, trivial reductions relying on
the reducibility of the Hamiltonian and Lindblad op-
erators are described. Examples of nontrivial reduc-
tions in the infinite temperature limit and the parity
preserving Majorana reductions are presented. Ap-
plications to open spin dynamics are discussed.
Keywords:
open quantum systems, Lindblad master equation,
symmetry reduction

Introduction

The open quantum dynamics in terms of the pos-
itive density operator in the Markovian approximation is
described by the Lindblad master equation [1]

p=Mp=—i[H,p|+Dp, D=> wLl(Vk),
k=1

1
LV)p=VpVT — 5 (VIVp+pViV).

Here H is the Hamiltonian, D is the dissipator built with
the traceless Lindblad operators Vi, Tr V;, = 0, and the
non-negative rates v > 0.

The density operator has trace 1 and at any time
t is written in the form

p(t) =n"'T+po(t), Trpo(t) =0, po(t)=po(t)’

where n is the dimension of the Hilbert space, I is the
unit operator, po(¢) is the traceless Hermitian operator.
The first term does not change in time. The vector space
A of all possible traceless parts generate the Lie alge-
bra (with the usual commutation of operators) that is iso-
morphic to su(n), the algebra of traceless anti-Hermitian
n X n operators. Indeed, multiplying traceless Hermitian
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operators by the complex unit, we come to traceless anti-
Hermitian operators. Thus, the Lindbladian dynamics of
Eq. (1) is closed in the Lie algebra A = su(n), i.e., it has
the su(n) symmetry.

We say that Eq. (1) admits a symmetry reduction
if it has a smaller invariant vector space Ag C A with a
Lie algebraic structure. In other words, A is a Lie al-
gebra (with the usual commutator of operators) and any
trajectory that starts in Ag remains there for any times,

[Ao, Ao] C Ao, po(0) € Ag

Obviously, Ay is a subalgebra of the total symmetry al-
gebra su(n). Symmetry reductions restrict the dynamics
into smaller invariant subspaces that additionally have a
Lie algebraic structure.

Since all initial conditions within Ay generate tra-
jectories that stay within A for all times, it is necessary
that the action of the superoperator M to the unit oper-
ator belongs to Ag and Ay is invariant under the action

of M,
MI e Ao, MAy C Ay. (2)

Eq. (2) gives the criterion for the subalgebra A to be a
symmetry reduction.

In particular, the full Krylov subspace generated
by the powers MPFT is within any symmetry reduction al-
gebra Ag. The subspace K; and so all symmetry reduc-
tions contain also the 1-dimensional subspace spanned
by the equilibrium state (perhaps not unique),

span {py} € Ao, n'MI+Mp;=0. (3)

Thus, for existence of symmetry reductions it is neces-
sary that the subspace K7 is a proper subspace of the
total algebra su(n),

dim K; < n? -1,
Kr=span{M*I, k=1,2, ...}

Indeed, the Krylov subspace K is an invariant sub-
space of Eq. (1), i.e., trajectories starting in K; remain
there all the time. In general, dim K; = n? — 1, the
Krylov subspace coincides with the total symmetry alge-
bra su(n), Eq. (1) does not have proper invariant sub-
spaces and hence does not admit symmetry reductions.

Egs. (2), (3), (4) show that the Hamiltonian and
Lindblad operators should satisfy special conditions for
Eq. (1) to have symmetry reductions. In these notes, we
discuss first trivial symmetry reductions relying on split-
ting the Hilbert space by reducibility of the Hamiltonian
and Lindblad operators. Then we present two examples
of nontrivial symmetry reductions: the reduction to the
infinite temperature limit M = 0 and the reduction by
the parity Z>-grading of the total algebra su(n) realised
as a Majorana reduction. In the first example, the sym-
metry reduction is due to a constraint to the dissipation
rates ;. The second example is valid for any dissipation
rates. The relevant applications to open spin dynamics
are pointed out and briefly discussed.

— Vi po(t) € Ao.

(4)

1. Trivial reduction

The Hamiltonian is an Hermitian operator. The
set of Lindblad operators (even in useful physical mod-
els) is typically not very large and is subdivided into a set
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of Hermitian operators and a set of Hermitian-conjugate
pairs,

V2q:‘/2Tq_1 ¢V2q71> C]:L e, My,
HZHT? V2m1+p:‘/2Tm1+p7 p:]-) ceey M.

We have then

1 =
D= _5 Z 72m1+P[V2m1+P7 [V2m1+pa H+

w7 (5)
+ Z {72q£(V2q) + ’YQq—l‘C(VQTq)} :
qg=1
In particular,
mi
MI =" (2g = Y2g-1)[Vaq: Vo (6)
g=1

Let the set of the Hermitian-conjugate pairs of
Lindblad operators Vo, V2Tq be reducible, i.e., pos-

sesses a common invariant vector subspace X C h of
the Hilbert space of a lower dimension,

Ve X CX, Vi XCX, g=1,...,m,
0<dimX =m<n.

Then the Hermitian-conjugate part of the dissipator
(given by the second term in Eq. (5)) is closed in the set
Ay of all traceless operators pg € su(n) that preserve
the reduced subspace X,

pENy — poX CX.

The set Ag is closed with respect to commutation of op-
erators and so forms a Lie algebra. This algebra is iso-
morphic to the su(n)-normalizer of the algebra su(m)
spanned by traceless operators on the reduced sub-
space X. If additionally the Hamiltonian and the Her-
mitian Lindblad operators belong to A,

VQmH—IH H e AU = N(su(m)),

then the subalgebra Ay is a symmetry reduction of
Eq. (1). Since the complementary subspace X. = h\ X,

dim X. = n—m s also invariant for V5, V;q, the same
construction is applicable to X.. Hence,

Ao = N(su(m)) = N(su(n —m))

where the subalgebra su(n—m) is spanned by traceless
operators on the complementary subspace X..

We call such symmetry reduction a ftrivial reduc-
tion, as it describes the situation where the initial Hilbert
space, being formally n-dimensional, is in fact split into
two independent subspaces of lower dimensions m, n—
m < n that are not dynamically connected. We have
(after a suitable permutation of Hilbert states)

Ao)

0 A.
0<m<n.

H, VkEA():(

dim A =m x m,
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In the special case where the Lindblad operators
are all Hermitian, Vo, = 0, ¢ = 1, ..., mq, the sym-
metry reductions are any subalgebras which normalizers
contain the operators Vo, 1, H.

2. Infinite temperature reduction
Let the unit operator annihilate the right-hand side
of Eq. (1),
MI=0 (7)

and the operators [ng,VJq] are linearly independent.
Then it follows from Eq. (6) that

(8)

Y2q = V2q-1 = Vg

As a result, according to Eq. (5),

1 &
D= _5 Z ’72m1+P[V2m1+p7 [V2m1+pa H_
p=1

ma (9)
1
=5 3" % (Vag, Vo 11 + [V,
qg=1

Vag 1) -

Let Ay be the subalgebra generated by the Hermitian-
conjugate pairs of Lindblad operators and let the Her-
mitian Lindblad operators and the Hamiltonian belong to
the normalizer of Ay,

[Vam, 10> Aol [H, Ag] € Ag +— {Vag, Vi, }. (10)

It follows then from Eq. (9) that Ag is a symmetry reduc-
tion of Eq. (1).

According to Eq. (7), the density operator p =
n~11 is anincoherent equilibrium solution to Eq. (1), fea-
turing the case where all the pure states of the system
have equal probabilities. This case corresponds to the
infinite temperature limit of both Fermi-Dirac and Bose-
Einstein statistics that in this case coincide with the cor-
responding limit of the Boltzmann distribution. For this
reason, we call the symmetry reduction given by Egs. (7),
(8), (10) an infinite temperature reduction.

As an example, consider the Markovian Lindblad
open dynamics of a single spin in a magnetic field. The
Hamiltonian contains the Zeeman splitting and the co-
herent driving parts,

H=Q8, + 5 (S4+5-).

The Lindblad operators are the usual raising and low-
ering operators characterizing the longitudinal relaxation
plus the z-operator that describes the transverse relax-
ation,

Vip=58+ =5, £1iS,, V3=25..

We assume that the initial value for the dynamics be-
longs to the spin algebra so(3) (treated as an isomorphic
copy of su(2)),

p(O) = n_ll +pzSz +p+S+ +p—S—7
(11)
[S.,S+] =£54+, [S4,5-]=28,

where n = 2541 is the dimension of the Hilbert space, s
is the spin quantum number (any half-integer or integer),
P-,+ are some constants.
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Let 1 = 2 = v, i.e., the Lindblad operators S
have the same dissipation rates. Then it can be easily
verified that we are under conditions of the infinite tem-
perature reduction described earlier in this section. For
any time ¢ the dynamics remains closed in so(3), i.e., is
reduced to a 3-dimensional dynamics of the constants

pZ,j:!
p(t) = n~ I +p2(t)S: + p+(t)S+ +p-(1)S-.

The latter is described by the well-known Bloch equa-
tions. This result is valid for any spin quantum number
s.

Let now s > 1/2 and y1 # 2. Then Eq. (7) no
longer holds and the dynamics, even starting in so(3) as
in Eq. (11), at¢ > 0 comes out of the spin algebra so(3).
Indeed, the (non-driven) thermal equilibrium state is rep-
resented now by a diagonal matrix that cannot be rep-
resented by a combination of the unit operator and the

hQS.,

operator S,
ptn = Z ' exp <— T )
= diag{p1, ..., pn} #n~ "I + BS..

As a matter of fact, higher orders S7, > 1, of the op-
erator S, occur that do not belong to so(3). This corre-
sponds to the case of finite temperatures.

It can be shown that in the presence of the coher-
ent terms in the Hamiltonian, w; # 0, and for y; # 7o,
the above spin dynamics does not admit symmetry re-
ductions: the dimension of any (non-equilibrium) trajec-
tory equals n2 — 1, the dimension of the total symmetry
algebra su(n). For w; = 0 and any 7 2 the dynamics
admits the symmetry reduction represented by the alge-
bra of traceless diagonal n x n matrices that is the Cartan
subalgebra of su(n).

3. Parity preserving reduction

The total symmetry algebra A = su(n) is a for-
mal superalgebra, i.e., it admits a Z5-grading into even
and odd subspaces respected by the commutation,

A=Ao+ A1, [A, Al C Aggjymoda)-

Here the even subspace A is a subalgebra, while the
odd subspace A (being not a subalgebra) complements
the even subalgebra to the total algebra A.

It can be assumed that the Zs-grading of su(n)
is inherited from a Z5-grading of the associative algebra
of n X n matrices. An example valid for any n is the
representation of traceless (anti-)Hermitian operators by
matrix elements p;;, 1 < [, 5 < n, that belong to even
and odd collateral diagonals,

As =span{p;; : | —j=s(mod2)}, s=0,1. (12)

The following result is a simple subsequence of
the above construction. If the Hamiltonian belongs to the
even subspace, while each Lindblad operator belongs
entirely to one of the two grading subspaces,

HGAQ, VkGAO OI‘Al,
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then the even subalgebra Ag is a symmetry reduction of
Eq. (1). We call such symmetry reduction a parity pre-
serving reduction.

For large n, the Z5-grading given by Eq. (12) may
be not unique. Below we consider an example of parity
preserving reduction based on the so-called Majorana
fermions.

The Majorana fermions form a set of 2m n xn op-

erators a;, l = 1, ..., 2m, that anti-commute with each
other and square to the unit operator,
ai =1, aa;+aja =0, [#].

Consider the even and odd parts of the Clifford alge-
bra generated by the Majorana fermions, i.e., the vector
spaces spanned by even and odd order products of the
operators ay,

2k
Agzspan{Halr, l-=1,...,2m,
r=1
kzzl,...,m},
2k—1
Alzspan{ H a., lr=1,...,2m,
r=1
kzl,...,m}.

Denote Ay, A1 the subspaces of the above sub-
spaces that contain only traceless operators. The even
subspace Ag is closed with respect to the operator com-
mutation and so forms a Lie algebra. It follows from the
anti-commutation of the Majorana fermions that the alge-
bra A contains the algebra of anti-symmetric quadratic
forms of the operators a; that is isomorphic to the alge-
bra so(2m) of (generally complex) anti-symmetric oper-
ators. Hence, Ag is an extension of so(2m) by all even
order products of a;.

The above construction suggests that the subdi-
vision A = Ag + A; is a Zs-grading of the total symme-
try algebra. Thus, if the Hamiltonian belongs to Ay and
each Lindblad operator belongs to either Ag or A1, then
the algebra Ay is a symmetry reduction of Eq. (1). In
other words, for any time ¢ the traceless part of the den-
sity operator is represented by a combination of even or-
der products of the operators a;. We call this a Majorana
reduction.

As an example, consider the system of m > 1
interacting spin-1/2 particles (for example, qubits). This
system is described by the tensor product of m 4-dimen-
sional operator spaces spanned by the set of 2 x 2 oper-
ators 1, S;, Sy, S. where 1 is the unit operator and S,
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o = x,9, 2, are the standard spin-1/2 operators (of the
2-representation of so(3)). As each spin has two states
and the trace of the density operator equals 1, the whole
symmetry algebra is A = su(2™) of dimension 4™ — 1.

Denote Sk, Sky, Sk- the spin operators gener-
ated by the kth spin — that placed in position & of the ten-
sor product: S =1X...x1x 85, x1...x1. These
individual operators for different spins k # k' commute
and generate the algebra so(3) within their subspaces
with the same k. It can be easily verified that the set of
2m operators

a2k—1 = 2k5km H Ssza

s<k
a2k = 2ksky H Ssz> (13)
s<k
k=1,....,m,
are Majorana fermions.
Here, the Majorana chain
2m—1 m—1
H= " hla,aii1] =Y (S + DiSizSit1,2)
=1 =1

leads to the Hamiltonian of the coherently driven 1-di-
mensional Ising model (with respect to the x axis). An-
other combination

2m—1 m—1
H= Z hilar, aj41] + Z hilask—1, aok42] =
=1 k=1

m—1
> (USiz + DPSiaSis1.a + DY SiySis1y)
=1

leads to the Hamiltonian of the driven anisotropic Heisen-
berg XY 1-dimensional chain. Adding higher even order
Majorana products, we can get interacting spin systems
of higher dimensions. In all cases, choosing various
combinations of odd or even order Majorana products as
the Lindblad operators, we generate various dissipation
models.

Other physically important examples of symmetry
reductions relying on parity can be suggested.

References

1. Breuer H.P., Petruccione F. The theory of open
quantum systems. Oxford University Press,

2010. 636 p.

Cmames nocmynurna e pedakuyuro 28.10.2021.



