Вещественный состав кварц-мусковитовых сланцев из доюрского фундамента Западно-Сибирского мегабассейна (Западно-Яротинская площадь, полуостров Ямал)

В.С. Пономарев, Ю.В. Ерохин, К.С. Иванов, Н.Н. Фаррахова

Институт геологии и геохимии УрО РАН, r. Екатеринбург p123v@yandex.ru erokhin-yu@yandex.ru ivanovks@igg.uran.ru atlantida21@mail.ru

Аннотация

Исследования геологии Западно-Сибирского мегабассейна являются приоритетными, поскольку месторождения углеводородов этого огромного региона крайне важны для экономики России. В работе детально описана минералогия и микроэлементный состав кварц-мусковитовых сланцев из фундамента полуострова Ямал (скв. Западно-Яротинская 303). Минеральный состав пород следующий: кварц, мусковит, хлорит (донбассит), альбит, карбонат (доломит, сидерит, кальцит), турмалин (дравит, шерл), рутил, циркон, фторапатит, пирит, халькопирит, сфалерит, галенит, виоларит, гояцит, флоренсит-(Се). Установленный нами флоренсит-(Се) является первой находкой для пород из фундамента Западно-Сибирской плиты. Распределение редких, рассеянных и редко-земельных элементов в исследуемых породах сходно с таковым метаморфических сланцев из фундамента Арктической (Лензитская площадь Тазовского полуострова и Верхнереченская площадь полуострова Ямал) и Приуральской (сланцы Шаимско-Кузнецовского мегантиклинория) частей Западно-Сибирского мегабассейна. Вероятно, исследуемые метапелиты сформировались в результате прогрева толщи осадочных пород гранитной интрузией, расположенной в непосредственной близости на территории Верхнереченской площади. Позже породы подверглись пропилитизации с образованием вторичного карбоната, гояцита, флоренсита-(Се) и сульфидов.

Ключевые слова:

минералогия, флоренсит-(Се), геохимия, метаморфические породы, фундамент, Ямал, Западная Сибирь

Composition of quartz-muscovite shales from pre-Jurassic basement of the West Siberian megabasin (West-Yarotinskaya area, Yamal)

V.S. Ponomarev, Yu.V. Erokhin, K.S. Ivanov, N.N. Farrakhova

Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences, Yekaterinburg p123v@yandex.ru erokhin-yu@yandex.ru ivanovks@igg.uran.ru atlantida21@mail.ru

Abstract

Geological studies of the West Siberian megabasin are a priority, since the hydrocarbon deposits of this vast region are extremely important for the Russian economy. The paper describes in detail the mineralogy and trace element composition of quartz-muscovite shales from the basement of the Yamal Peninsula (well West-Yarotinskaya 303). The mineral composition of the rocks is as follows: quartz, muscovite, donbassite, albite, dolomite, siderite, calcite, dravite, schorl, rutile, zircon, fluorapatite, pyrite, chalcopyrite, sphalerite, galena, violarite, goyazite, florensite-(Ce). The florensite-(Ce) determined by us is the first find for rocks from the basement of the West Siberian Plate. The distribution of rare, trace, and rare-earth elements in the studied rocks is similar to that of metamorphic shales from the basement of the Arctic (Lenzitskaya area and Verkhnerechenskaya area) and Cis-Ural (Shaimsko-Kuznetsovsk meganticlinorium shales) parts of the West Siberian megabasin. Probably, the studied metapelites were formed as a result of heating of the sedimentary rocks by a granite intrusion located in the immediate vicinity on the territory of the Verkhnerechenskaya area. Later, the rocks underwent propilitization with the formation of secondary carbonate, goyazite, florensite-(Ce) and sulfides.

Keywords:

mineralogy, florensite-(Ce), geochemistry, metamorphic rocks, basement, Yamal, Western Siberia

Введение

Исследования геологии арктических широт Западно-Сибирского мегабассейна важны для поиска нефти и газа на этой огромной, но недостаточно изученной территории. Перспективными породами для поиска нефти и газа, помимо юрских и меловых отложений осадочного чехла, являются также гранитоиды и их метаморфическое обрамление из фундамента Западно-Сибирского мегабассейна [1–3 и др.].

На полуострове Ямал метаморфические породы фундамента вскрыты на территории Верхнереченской (скв. 2) (рис. 1) и Западно-Яротинской (скв. 300 и 303) площадей. Эти сланцы рассматриваются нами как северное обрамление Верхнереченского гранитного плутона [1], возраст которого позднепермский [4, 5]. Возраст метаморфических сланцев из фундамента Ямала до недавнего времени считался докембрийским [6]. За последнее время В.С. Бочкаревым с коллегами было получено несколько U-Pb-датировок по акцессорным цирконам из кристаллических сланцев. В сланцах из скв. Верхнереченская 2 был установлен возраст 1168 ± 13 млн лет, а в породах Западно-Яротинской площади в скв. 302–552 ± 13 млн лет, в скв. 303–519 и 978 ± 10 млн лет [7], что в целом подтверждало древний, кембрийский и докембрийский возраст. Но указанные авторы, по-видимому, не вполне учли то, что циркон – очень устойчивый минерал, легко переотлагается и при этом не

Рисунок 1. Схема расположения скважин. Скважины: 1-3 – Верхнереченская; 300, 303 – Западно-Яротинская; 77 – Лензитская.

Figure 1. Well layout. Wells: 1-3 – Verkhnerechenskaya; 300, 303 – West-Yarotinskaya; 77 – Lenzitskaya.

6

перезапускает изотопную систему при относительно слабом метаморфизме [8], поэтому полученные датировки являются возрастом детритового циркона, который к тому же зачастую имел округлую (т.е., вероятно, окатанную) форму. Нами был установлен возраст метаморфизма (⁴⁰Ar/³⁹Ar-метод, ≈ 271 млн лет) подобных метаморфических сланцев из фундамента Тазовского полуострова Западно-Сибирского мегабассейна (Лензитская площадь, скв. 77) [9 и др.].

В настоящей работе приводится первое описание минералогии и особенностей микроэлементного состава кварц-мусковитовых сланцев из фундамента Западно-Сибирского мегабассейна (скв. Западно-Яротинская 303, полуостров Ямал, рис. 1).

Объект исследования

Нами исследовались образцы керна кварц-мусковитовых сланцев с глубин 2757 и 2762 м. Порода визуально имеет серую окраску, структура – мелкозернистая и тонкочешуйчатая, текстура – слоистая. Минеральный состав сланцев: кварц, мусковит, хлорит (донбассит), альбит, карбонат (доломит, сидерит, кальцит), турмалин (дравит, шерл), рутил, циркон, фторапатит, пирит, халькопирит, сфалерит, галенит, виоларит, гояцит и флоренсит-(Се).

Методы исследования

Аналитические исследования выполнены в лаборатории ФХМИ Института геологии и геохимии УрО РАН, г. Екатеринбург. Петрохимический состав кварц-мусковитовых сланцев установлен на рентгенофлуоресцентном волновом спектрометре XRF 1800 (Shimadzu), аналитик Н.П. Горбунова. Потери при прокаливании и окисное железо определены методом мокрой химии, аналитик Г.С. Неупокоева. Содержание редких рассеянных и редкоземельных элементов определялось на масс-спектрометре с индуктивно связанной плазмой ELAN-9000 (PerkinElmer Instruments), аналитики Н.В. Чередниченко и Д.В. Киселева. Химический состав минералов проанализирован в полированных шлифах на микроанализаторе САМЕСА SX100, аналитик И.А. Готтман. Изучение акцессорных минералов и сульфидов проводилось с помощью CЭM JSM-6390LV (Jeol) с ЭДС INCA Energy 450 X-Max 80 (Oxford Instruments), аналитик Н.Н. Фаррахова. На этом же приборе получены фотографии минералов в режиме обратнорассеянных электронов.

Результаты исследования

Кварц-мусковитовые сланцы характеризуются чередованием слоев альбит-кварцевого агрегата и хлорит-мусковитовых лейст (рис. 2). Порода претерпела интенсивную деформацию, о чем свидетельствует наличие микроскладчатости, которая видна невооруженным взглядом.

Кварц в породе слагает зерна полигональной формы размером до 0,5 мм. Присутствуют зерна с неравномерным погасанием. Совместно с альбитом кварц образует мелкозернистый агрегат между слоями хлорит-мусковитовых лейстов. В кварце встречаются мелкие включения апатита и мусковита. Мусковит – один из главных породообразу-

Рисунок 2. Кварц-серицитовый сланец. Скважина Западно-Яротинская 303, глубина 2757 м. Проходящий свет.

Figure 2. Quartz-sericite schist. Well West-Yarotinskaya 303, depth 2757 m. Transmitting light.

примесей в минерале отмечается небольшое количество FeO – до 2,42 мас.%, MgO – 2,00 мас.% и TiO₂ – 0,48 мас.%. Хлорит в сланце бесцветный, образует скопления вытянутых лейстов совместно с мусковитом, часто смятые в складки. Размер лейстов – до 1 мм. В химическом составе хлорита отмечаются только SiO₂ (47,09–47,69 мас.%), Al₂O₃ (36,93–37,38 мас.%) и небольшая примесь K₂O (до 1,12 мас.%), поэтому минерал относится к донбасситу (табл. 1, ан. 6–7). Отличается от теоретического состава немного повышенным содержанием SiO₂ и меньшим количеством Al₂O₃. Альбит образует короткопризматические зерна с неровными ограничениями среди кварцевого и хлорит-слюдистого агрегатов. Размер зерен – до 0,5 мм. По данным микрозондового анализа, отвечает чистому альбиту (табл. 1, ан. 8–11).

Турмалин в породе встречается в плагиоклаз-кварцевом и хлорит-слюдистом агрегатах, где образует короткопризматические зерна и изометричные треугольные сечения зерен, характерные для кристаллов турмалина.

Химический состав (мас.%) минералов из кварц-мусковитового сланца

Table 1

Таблица 1

Nº	SiO ₂	Ti0 ₂	Al ₂ O ₃	Cr ₂ 0 ₃	FeO	Mn0	MgO	CaO	Na ₂ 0	K ₂ 0	F	Сумма
Мусковит												
1	47,86	0,22	31,44	0,08	2,07	0,06	1,49	-	0,76	9,08	0,21	93,27
2	49,68	0,39	30,82	0,04	2,42	0,06	1,70	-	0,76	9,75	0,15	95,77
3	50,57	0,24	30,40	0,02	2,34	0,05	1,91	-	0,71	9,76	0,12	96,12
4	51,14	0,26	29,99	0,04	2,15	0,02	2,00	0,02	0,64	9,90	0,25	96,41
5	48,62	0,48	32,95	-	1,65	-	1,11	0,01	0,56	9,33	0,19	94,90
Хлорит												
6	47,69	0,09	37,38	0,07	0,36	-	0,11	0,02	0,17	1,12	0,09	87,10
7	47,09	-	36,93	0,08	0,25	-	0,29	0,02	0,09	0,86	0,01	85,62
Альбит												
8	68,29	-	18,81	-	0,19	-	-	0,05	12,35	0,04	-	99,73
9	69,07	-	19,07	-	0,01	-	-	0,03	12,11	0,05	-	100,34
10	68,37	-	19,14	-	0,04	-	-	0,06	12,22	0,04	-	99,87
11	68,69	-	19,21	-	-	0,03	-	0,04	12,13	0,03	-	100,13
	Турмалин											
12	34,11	1,77	32,08	0,10	9,49	-	4,86	2,06	1,38	0,06	0,25	86,16
13	36,18	1,00	30,38	0,04	7,89	-	6,81	0,62	2,48	0,03	0,33	85,76
14	36,78	0,68	31,62	0,03	6,65	-	6,84	0,15	2,53	0,01	0,29	85,58
15	36,69	0,82	30,98	0,05	7,73	-	6,73	0,15	2,77	-	0,26	86,18
						Карбона	т					
16	-	-	-	-	0,04	0,04	0,01	55,79	-	-	-	55,88
17	-	-	-	-	14,08	0,26	12,01	28,44	-	-	-	54,79
18	-	-	-	-	14,34	0,24	11,58	25,87	-	-	-	52,03
19	-	-	-	-	42,63	0,47	11,05	0,67	-	-	-	54,82
20	-	-	-	-	36,92	0,43	16,26	1,74	-	-	-	55,35
21	-	-	-	-	38,20	0,45	14,79	1,55	-	-	-	54,99
22	-	-	-	-	36,65	0,36	17,53	1,13	-	-	-	55,67

Chemical composition (wt. %) of minerals from quartz-muscovite schist

Примечание. ан. 12 – шерл; 13-14 – дравит; 16 – кальцит; 17, 18 – доломит; 19-22 – сидерит. Note. an. 12 – schorl; 13-14 – dravite; 16 – calcite; 17, 18 – dolomite; 19-22 – siderite.

ющих минералов в породе. Размер индивидов минерала – до 1 мм. Образует тонкопереслаивающийся агрегат с лейстами хлорита. По химическому составу слюда отвечает практически чистому мусковиту (табл. 1, ан. 1–5). Среди Минерал плеохроирует в буровато-зеленоватых тонах. Размер зерен – до 20 мкм. Установлено, что кристаллы имеют зональность. Центральная часть индивида сложена кальциево-магнезиальным шерлом (табл. 1, ан. 12), а промежуточная и краевая части кристалла – железистым дравитом (см. табл. 1, ан. 13–15). Шерл содержит значимое количество СаО – 2,06 мас.%, что отвечает 38 % минала увита. При этом дравит практически не содержит кальций и характеризуется большим содержанием FeO – до 7,89 мас.%, что пересчитывается на 36 % минала шерла. Ранее нами уже описывался турмалин в метаморфических сланцах из фундамента Шаимского нефтегазоносного района, который относился к железистому дравиту [1].

Рутил образует зерна неправильной формы с неровными ограничениями в слюдистом агрегате. Размер зерен – до 250 мкм. В шлифе темно-коричневый, без плеохроизма. В минерале отмечаются примеси FeO и V₂O₂ до 0,43 и 0,49

Рисунок 3. Включения флоренсита (Flo) и гояцита (Goy) во фторапатите (Ap). Скважина Западно-Яротинская 303, глубина 2757 м. BSE-фото. Picture. 3. Inclusions of Florensite (Flo) and goyazite (Goy) in fluorapatite (Ap). Well West-Yarotinskaya 303, depth 2757 m. BSE-photo.

Таблица 2 Состав гояцита и флоренсита (мас.%) из кварц-мусковитового сланца Table 2

> Composition of goyazite and florensite (wt. %) from quartz-muscovite schist

NIO	Гояцит	Флоренсит-(Се)					
IN-	1	2	3				
Al ₂ O ₃	33,80	31,04	32,55				
P ₂ 0 ₅	27,30	25,49	26,28				
La ₂ O ₃	3,80	5,03	4,10				
Ce ₂ O ₃	7,37	14,97	11,82				
Pr ₂ O ₃	-	1,91	1,30				
Nd ₂ O ₃	2,39	4,98	5,64				
Sr0	10,42	4,76	5,80				
FeO	-	1,01	0,47				
Ca0	1,25	0,28	0,38				
Na ₂ 0	-	-	0,60				
K ₂ 0	-	-	0,52				
H ₂ O	13,66	10,53	10,53				
Сумма	86,34	89,47	89,47				
Формульные единицы, рассчитанные на шесть катионов							
1	(Sr _{0.48} Ce _{0.22}	(Sr _{0.48} Ce _{0.22} La _{0.11} Ca _{0.11} Nd _{0.02}) _{0.99} Al _{3.12} (PO ₄) _{1.84} (OH) ₅ *H ₂ O					
2	(Ce _{0.46} Sr _{0.23} La	$(Ce_{0,44}Sr_{0,23}La_{0,15}Nd_{0,15}Fe_{0,07}Pr_{0,04}Ca_{0,03})_{115}Al_{3,05}(PO_{4})_{1,80}(OH)_{4}$					
3	(Ce _{0.35} Sr _{0.27} Nd _{0.14} La _{0.12} Na _{0.09} K _{0.05} Pr _{0.04} Ca _{0.03} Fe _{0.03}) ₁₁₄ Al _{3.07} (PO,) _{1.76} (OH),						

Примечание. Содержание $\rm H_2O$ взято из теоретического состава минералов. Note. The content of $\rm H_2O$ is taken from the theoretical composition of the minerals.

мас.% соответственно. Циркон встречается в хлорит-мусковитовом слоистом агрегате в виде единичных, призматических и окатанных зерен размером до 30 мкм. По данным микрозондового анализа, в минерале отмечается только примесь HfO₂ – 1,94 мас.%.

В кварц-мусковитовом сланце отмечаются три минеральных вида карбоната: доломит, сидерит и кальцит. Кальцит образует вытянутые зерна размером до 150 мкм, с неровными ограничениями в плагиоклаз-кварцевом агрегате. Он практически не содержит примесей (см. табл. 1, ан. 16). Доломит встречается в виде зерен неправильной формы размером 80–100 мкм и ассоциирует с мусковитом и хлоритом. В химическом составе доломита содержание FeO достигает 14,34 мас.% (см. табл. 1, ан. 17, 18), что отвечает 40 % минала анкерита. Сидерит слагает зерна неправильной формы, занимая интерстиции между лейстами мусковита и хлорита. Размер зерен – до 100 мкм. Сидерит содержит MgO до 17,53 мас.%, что пересчитывается на 45 % минала магнезита. Среди примесей также отмечаются СаО и MnO до 1,74 и 0,47 мас.% соответственно (см. табл. 1, ан. 19–22).

Апатит равномерно распределен по всему объему породы. Встречается он в виде игольчатых и призматических зерен размером до 120 мкм в длину, часто разбитых трещинами (рис. 3). По химическому составу соответствует фторапатиту. На некоторых индивидах фторапатита наблюдаются более поздние «наросты» зерен минералов группы крандаллита – гояцита и флоренсита. Гояцит образует зерна неправильной формы размером до 10 мкм (рис. 3). Состав минерала немного отличается от теоретического дефицитом Р и избытком Al, а также большим количеством примесей Ce, La, Nd и Ca (табл. 2, ан. 1). Такие примеси объ-

ясняются тем, что гояцит представляет собой твердый раствор ряда гояцит – флоренсит-(Се) – флоренсит-(La) - флоренсит-(Nd) - крандаллит. Гояцит близок по составу к описанному нами ранее гояциту из метаморфических сланцев скважины Западно-Яротинская 300 на глубине 2762 м [10], а также в кварц-хлорит-слюдистой породе из фундамента Западно-Семивидовской площади (скв. 1245, глубина отбора – 1840 м) Шаимского района Западной Сибири [1]. Флоренсит-(Се) встречается в виде единичных вытянутых зерен размером до 10 мкм (рис. 3). Под электронным микроскопом на BSE-изображении минерал отличается от гояцита более интенсивной белой окраской, так как содержит большее количество редкоземельных элементов. Химический состав минерала показан в табл. 2 (ан. 2 – 3). В фосфате отмечаются небольшой избыток Al, дефицит P и примеси Sr, Nd, La, Na, K, Pr, Ca и Fe относительно теоретического состава минерала.

Сульфидная минерализация в породе представлена пиритом, халькопиритом, сфалеритом, виоларитом и галенитом. Сульфиды в основном тяготеют к хлорит-мусковитовым лейстам. Пирит в сланце образует вытянутые, изометричные, неправильной формы зерна размером до 70 мкм. Зерна пирита часто раздроблены. В минерале отмечается примесь Ni – до 4,31 мас.%. Халькопирит слагает вытянутые зерна с неровными ограничениями. Обычно однородный, но иногда срастается со сфалеритом. Размер зерен – до 80 мкм. Химический состав халькопирита, мас.%: Сu – 34,3; Fe – 29,9; S – 35,4; сумма – 99,6, т.е. близок к теоретическому. Сфалерит встречается редко, в основном на периферии скоплений халькопирита. Размер зерен не превышает 20 мкм. Химический состав сфалерита, мас.%: Zn – 67,02; Fe – 0,34; Cd – 0,02; Pb – 0,11; S – 32,71; сумма – 100,20.

Виоларит ассоциирует с пиритом и галенитом, его химический состав следующий, мас.%: Fe – 15,80; Co – 13,37; Ni – 27,15; S – 41,90; сумма – 98,22. Кристаллохимическая формула – Fe_{0.87}(Ni_{1.42}Co_{0.70})_{2.12}S_{4.01}. Из нее видно, что в минерале наблюдается небольшой дефицит

нерале наолюдается неоольшой дефици железа, который, видимо, компенсируется либо никелем, либо кобальтом. Виоларит с примесью Со нами уже встречался в кварц-серицитовых сланцах из скважины Малотетеревская № 1П (глубина – 1983 м), пробуренной в Шаимском нефтегазоносном районе Западно-Сибирской плиты [11]. Галенит образует редкие, мелкие, вытянутые индивиды размером до 5 мкм, ассоциируя с пиритом. В спектре минерала отмечаются только пики Рb и S.

Химический состав кварц-мусковитового сланца показан в табл. З. Содержание SiO₂ - 54,07 - 62,11 мас.%; Al₂O₂ - 17,21 - 19,10 мас.%. В метаморфических сланцах отмечаются высокие концентрации, г/т: Ті (2600-3000), V (110-130), Cr (180-240), Mn (370-500), Rb (87-120), Sr (100-160) и Ba (330-400). Содержание редкоземельных элементов в метаморфических сланцах -47-72 г/т (табл. 3). Тренд распределения редкоземельных элементов, нормированный на пост-архейский австралийский сланец (PAAS) [17] в кварц-мусковитовых сланцах характеризуется небольшой отрицательной Се аномалией и положительными Eu и Gd аномалиями (рис. 4). (La/Yb)n в

породах – 0,66-0,69. В целом содержание редкоземельных элементов в исследуемых породах ниже, чем в РААЅ, и наблюдается небольшое обеднение легкими РЗЭ [17]. Распределение редких, рассеянных и редкоземельных элементов при нормировании на примитивную мантию [12] в породах характеризуется положительными аномалиями по U, Pb и отрицательными – по Nb, Ta, Zr и Ti (рис. 5).

Обсуждение результатов

Метапелиты широко распространены в фундаменте Западно-Сибирской плиты. Подобными породами, например, в основном сложен крупный Шаимско-Кузнецовский мегантиклинорий [1 и др.].

Минералогия кварц-мусковитовых сланцев близка с ранее изученными нами метаморфическими сланцами из скважины Западно-Яротинская 300 с глубины 2762 м [10], расположенной в 25 км западнее. Отличие наблюдается в преобладании кварца над альбитом, а также в наличии: железистого дравита, магнезиального шерла, халькопи-

Таблица З

Table 3

Химический (мас.%) и микроэлементный (г/т) состав сланцев

Chemical (wt. %) and trace element (ppm) composition of schists	
---	--

Элементы	1	2	Элементы	1	2	Элементы	1	2
SiO ₂	62,11	54,07	Ni	37,00	40,00	La	9,00	14,00
TiO ₂	0,66	0,70	Cu	26,00	35,00	Ce	14,00	23,00
Al ₂ O ₃	17,21	19,10	Zn	70,00	80,00	Pr	2,60	3,80
Fe ₂ O ₃	1,27	1,56	Cd	0,09	0,14	Nd	11,00	16,00
P205	0,11	0,10	Sn	1,20	1,30	Sm	2,60	3,50
Mn0	0,08	0,10	Sb	0,40	0,40	Eu	0,70	0,90
Fe0	3,90	4,90	Te	<0,01	0,02	Gd	2,80	3,70
MgO	1,69	2,32	Cs	2,10	2,40	Tb	0,30	0,50
CaO	1,29	2,72	Ba	330,00	400,00	Dy	1,80	2,70
NaO	2,01	1,52	Hf	1,60	1,50	Ho	0,35	0,50
K ₂ 0	2,27	2,45	Ta	0,36	0,36	Er	1,00	1,50
П.п.п.	7,20	10,40	W	1,60	1,60	Tm	0,15	0,23
Сумма	99,81	99,95	Τl	0,40	0,50	Yb	1,00	1,50
Li	15,00	17,00	Pb	9,00	10,00	Lu	0,15	0,23
Be	0,80	0,90	Bi	0,18	0,20	Ga	18,00	20,00
Sc	14,00	20,00	Th	5,00	7,00	Ge	1,20	1,20
Ti	2600,00	3000,00	U	5,10	3,80	As	2,30	3,50
V	110,00	130,00	Rb	87,00	120,00	Se	0,18	0,59
Cr	240,00	180,00	Sr	100,00	160,00	Nb	7,00	7,00
Mn	370,00	500,00	Y	11,00	17,00	Мо	1,30	1,10
Со	15,00	17,00	Zr	61,00	57,00	Ag	0,38	0,33

Примечание. 1 – З-Яр 303/2757; 2 – З-Яр 303/2762. Note. 1 – W-Yar 303/2757; 2 – W-Yar 303/2762.

Рисунок 4. Распределение редкоземельных элементов в сланцах, нормированных на пост-архейский австралийский сланец (PAAS) [17]. Скважина Западно-Яротинская 303.

Figure 4. Distribution of rare earth elements in schists, normalized to PAAS [17]. Well West-Yarotinskaya 303.

Съ ва О та La Pb Sr Nd Sm Ti Y Lu Рисунок 5. Распределение редких, рассеянных и редкоземельных элементов в сланцах, нормированных на примитивную мантию [16]. Скважина Западно-Яротинская 303.

Figure 5. Distribution of rare, trace and REE in schists, normalized to primitive mantle [16]. Well West-Yarotinskaya 303.

рита, виоларита, флоренсита-(Се) и кальцита. В исследуемых породах не найден кобальтин, кубанит, синхизит, самородная медь и серебро, отмеченные в сланцах из скважины Западно-Яротинская 300. От метаморфических сланцев из фундамента Тазовского полуострова (скважина Лензитская 77 [13]) кварц-мусковитовые сланцы отличаются отсутствием альмандина, титанита и ксенотима-(Y). Установленный нами флоренсит-(Се) является редким минералом и первой находкой для пород из фундамента Западно-Сибирской плиты. На Приполярном Урале флоренсит-(Се) встречается в виде крупных кристаллов и сростков с ксенотимом в хрусталеносных жилах Au-P33 рудопроявления Сводовый на хребте Малдынырд [14]. Также находки флоренсита известны из русловых отложений рек Б. Авняр, Миселя, М. Авзян и Б. Авзян на Южном Урале, которые образовались в результате размыва метаморфических пород рифея и венда [15, 16]. В нашем случае флоренсит-(Се) и гояцит наблюдаются как в трещинах, так и в виде наростов на фторапатите и могли образоваться за счет разложения раннего монацита в процессе наложенной пропилитизации.

Высокие концентрации в породах титана обусловлены наличием рутила, главного акцессорного минерала сланцев. С этим же связано и присутствие значимых количеств ванадия, являющегося главным примесным элементом в рутиле. Повышенное содержание рубидия напрямую связано с основным породообразующим минералом – слюдой, поскольку рубидий, как известно, имеет геохимическое сродство с калием. Со слюдами и местами с хлоритом связана концентрация марганца, который изоморфно входит в позицию железа. Высокое содержание стронция в некоторых сланцах объясняется присутствием обильной карбонатной минерализации, так как известно, что стронций часто входит в позицию кальция в карбонатах. Это же касается и бария – примесного элемента в карбонатах и полевых шпатах, хотя в некоторых случаях он слагает барит в сланцах. Значимое присутствие хрома в сланцах связано, по всей видимости, с акцессорной вкрапленностью магнетита. Распределение редких рассеянных и редкоземельных элементов в исследуемых породах близко к таковому для метаморфических сланцев из фундамента Арктической части Западной Сибири и Приуральской части Западно-Сибирского мегабассейна, слагающих обрамление монцодиорит-гранитных массивов Шаимско-Кузнецовского мегантиклинория (Толумская, Малотетеревская, Окуневская площади в пределах Шаимского нефтеносного района) Западной Сибири [1].

Выводы

Таким образом, нами детально описана минералогия и установлен микроэлементный состав кварц-мусковитовых сланцев из фундамента полуострова Ямал (скв. Западно-Яротинская 303). Минеральный состав пород следующий: кварц, мусковит, хлорит (донбассит), альбит, карбонат (доломит, сидерит, кальцит), турмалин (дравит, шерл), рутил, циркон, фторапатит, пирит, халькопирит, сфалерит, галенит, виоларит, гояцит, флоренсит-(Се). Распределение редких рассеянных и редкоземельных элементов в исследуемых породах подобно таковому для метаморфических сланцев из фундамента Арктической (Лензитская площадь Тазовского полуострова и Верхнереченская площадь полуострова Ямал) и Приуральской (сланцы Шаимско-Кузнецовского мегантиклинория Западной Сибири) частей Западно-Сибирского мегабассейна. Несмотря на малое количество доступных для исследования образцов для достаточно большой территории, можно предположить, что исследуемые метапелиты являются результатом прогрева толщи осадочных горных пород гранитной интрузией, расположенной в непосредственной близости на территории Верхнереченской площади. Позже породы подверглись пропилитизации с образованием вторичного карбоната, гояцита, флоренсита-(Се) и сульфидов.

Литература

- Алексеев, А.А. Редкоземельные фосфаты в горных породах и аллювиальных отложениях западного склона Южного Урала / А.А. Алексеев, Е.А. Тимофеева // Литосфера. – 2008. – № 1. – С. 140–145.
- Бочкарев, В.С. Распространение докембрийских метаморфитов, карбонатных платформ и палеозойских чехлов Западно-Сибирской геосинеклизы (методико-геофизический аспект) / В.С. Бочкарев // Геология нефти и газа. – 2018. – № 3. – С. 49–58.
- Ерохин, Ю.В. Минералогия метаморфических сланцев из доюрского основания южной части полуострова Ямал / Ю.В. Ерохин, В.В. Хиллер, К.С. Иванов, С.А. Рыльков, В.С. Бочкарев // Литосфера. – 2014. – № 5. – С. 136–140.
- Ерохин, Ю.В. Минералогия включений и возраст циркона из гранитов фундамента Верхнереченской площади (полуостров Ямал) / Ю.В. Ерохин, К.С. Иванов, В.А. Коротеев, В.В. Хиллер // Литосфера. – 2017. – Т. 17, № 6. – С. 81–90.
- Иванов, К.С. Геологическое строение фундамента Приуральской части Западно-Сибирского нефтегазоносного мегабассейна / К.С. Иванов, Ю.Н. Федоров, Ю.В. Ерохин, В.С. Пономарев. – Екатеринбург: ИГГ УрО РАН, 2016. – 302 с.
- Паленова, Е.Е. Минералогия аллювиальных отложений Авзянского золоторудного района (Южный Урал) / Е.Е. Паленова, К.А. Новоселов, Е.В. Белогуб, И.А. Блинов, С.Д. Григорьева // Литосфера. – 2018, Т. 18, № 3. – С. 459–474.
- Пономарев, В.С. Сульфидная минерализация серицит-кварцевых сланцев из доюрского основания Шаимского района (Западная Сибирь) / В.С. Пономарев, К.С. Иванов // Ежегодник-2015. – 2016. – С. 146–148. – (Тр. ИГГ УрО РАН. Вып. 163).
- Репина, С.А. Онтогения сростка кристаллов флоренсита и ксенотима, осложненных осцилляционной зональностью, в жилах Аu-РЗЭ рудопроявления Сводовый, Приполярный Урал / С.А. Репина, В.А. Муфтахов // Минералогия. – 2020. – Т. 6, № 3. – С. 26–43.

- Рудкевич, М.Я. Тектоника Западно-Сибирской плиты и ее районирование по перспективам нефтегазоносности / М.Я. Рудкевич. – Москва: Недра, 1969. – 280 с. – (Труды ЗапСибНИГНИ. Вып. 14).
- Тугарева, А.В. Гранитоидный магматизм в пределах Фроловской мегавпадины Западной Сибири / А.В. Тугарева, М.Л. Мороз, Г.А. Чернова, Е.В. Белова // Известия Высших учебных заведений. Нефть и газ. – 2018. – № 6. – С. 33–40.
- Ivanov, K.S. Nature and age of metamorphic rocks from the basement of the West Siberian megabasin (according to U-Pb isotopic dates) / K.S. Ivanov, Yu.N. Fedorov, V.S. Ponomarev, V.A. Koroteev, Yu.V. Erokhin // Doklady Earth Sciences. – 2012. – Vol. 443, Part 2. – P. 321–325.
- Ivanov, K.S. Precambrian complexes of the West Siberian plate: problem and solution / K.S. Ivanov, V.A. Koroteev, V.S. Ponomarev, Yu.V. Erokhin // Doklady Earth Sciences. – 2018. – V. 482, Part 1. – P. 1152–1156.
- Ivanov, K.S. First data on the age at metamorphic schists from the Taz peninsula (Arctic, Western Siberia) / K.S. Ivanov, V.A. Koroteev, Yu.V. Erokhin, V.S. Ponomarev, A.V. Travin // Doklady Earth Sciences. – 2020. – Vol. 491. – Part 1. – P. 135–138.
- Khiller, V.V. Chemical composition and age of monazite-(Ce) in granitoids of the crystalline basement from the South Yamal / V.V. Khiller // Известия УГГУ. – 2020. – Вып. 4 (60). – С. 28–34.
- 15. Ponomarev, V.S. Mineralogy of schists from the basement of the southwestern part of the Tazovsky peninsula of the West Siberian megabasin (Lenzitskaya oil exploration area, YNAD) / V.S. Ponomarev, K.S. Ivanov, V.V. Khiller // Известия УГГУ. – 2019. – № 2 (54). – С. 20–27.
- Sun, S.S. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes / S.S. Sun, W.F. McDonough // Magmatism in Ocean Basins. London, Geol. Soc. Spec. Publ. – 1989. – P. 313–345.
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. P. 312.

References

- Alekseev, A.A. Redkozemelnyye fosfaty v gornyh porodah i allyuvialnyh otlozheniyah zapadnogo sklona Yuzhnogo Urala [Rare earth phosphates in rocks and alluvial deposits of the western slope of the Southern Urals] / A.A. Alekseev, E.A. Timofeeva // Lithosphere. – 2008. – No. 1. – P. 140–145.
- Bochkarev, V.S. Rasprostraneniye dokembriyskih metamorfitov, karbonatnyh platform i paleozoyskih chehlov Zapadno-Sibirskoy geosineklizy (metodiko-geofizicheskiy aspekt) [Distribution of Precambrian metamorphites, carbonate platforms and Paleozoic covers of the West Siberian geosyneclise (methodological and geophysical aspect)] / V.S. Bochkarev // Geology of oil and gas. – 2018. – No. 3. – P. 49–58.
- 3. Erokhin, Yu.V. Mineralogiya metamorficheskih slantsev iz doyurskogo osnovaniya yuzhnoy chasti poluostro-

va Yamal [Mineralogy of metamorphic shales from the pre-Jurassic basement of the southern part of the Yamal Peninsula] / Yu.V. Erokhin, V.V. Khiller, K.S. Ivanov, S.A. Rylkov, V.S. Bochkarev // Lithosphere. – 2014. – No. 5. – P. 136-140.

- Erokhin, Yu.V. Mineralogiya vklyucheniy i vozrast tsirkona iz granitov fundamenta Verhnerechenskoy ploshchadi (poluostrov Yamal) [Mineralogy of inclusions and age of zircon from granites of the basement of the Verkhnerechenskaya area (Yamal Peninsula)] / Yu.V. Erokhin, K.S.Ivanov, V.A. Koroteev, V.V. Khiller // Lithosphere. – 2017. – Vol. 17, No. 6. – P. 81-90.
- Ivanov, K.S. Geologicheskoye stroyeniye fundamenta Priuralskoy chasti Zapadno-Sibirskogo neftegazonosnogo megabasseyna [Geological structure of the basement of the Ural part of the West Siberian oil and gas megabasin] / K.S. Ivanov, Yu.N. Fedorov, Yu.V. Erokhin, V.S. Ponomarev. – Yekaterinburg: Institute of Geology and Geochemistry of the Ural Branch of the RAS, 2016. – 302 p.
- Palenova, E.E. Mineralogiya allyuvialnykh otlozheniy Avzyanskogo zolotorudnogo rayona (Yuzhnyy Ural) [Mineralogy of alluvial deposits of the Avzyan gold ore region (South Urals)] / E.E. Palenova, K.A. Novoselov, E.V. Belogub, I.A. Blinov, S.D. Grigorieva // Lithosphere. – 2018, Vol. 18, No. 3. – P. 459-474.
- Ponomarev, V.S. Sulfidnaya mineralizatsiya seritsit-kvartsevykh slantsev iz doyurskogo osnovaniya Shaimskogo rayona (Zapadnaya Sibir) [Sulfide mineralization of sericite-quartz schists from the pre-Jurassic basement of the Shaim region (Western Siberia)] / V.S. Ponomarev, K.S. Ivanov // Yearbook-2015. – 2016. – P. 146-148. – (Proceedings of the Institute of Geology and Geochemistry of the Ural Branch of the RAS. Issue 163).
- Repina, S.A. Ontogeniya srostka kristallov florensita i ksenotima, oslozhnennyh ostsillyatsionnoy zonalnostyu, v zhilakh Au-RZE rudoproyavleniya Svodovyj, Pripolyarnyj Ural [Ontogeny of an intergrowth of florensite and xenotime crystals complicated by oscillatory zoning in Au-REE veins of the Svodovy ore occurrence, Subpolar Urals] / S.A. Repina, V.A. Muftakhov // Mineralogy. – 2020. – Vol. 6, No. 3. – P. 26-43.
- Rudkevich, M.Ya. Tektonika Zapadno-Sibirskoy plity i yeye rayonirovaniye po perspektivam neftegazonosnosti [Tectonics of the West Siberian Plate and its regionalization in terms of oil and gas potential] / M.Ya. Rudkevich. – Moscow: Nedra, 1969. – 280 p. – (Proceedings of ZapSibNIGNI. Issue 14).
- Tugareva, A.V. Granitoidnyy magmatizm v predelah Frolovskoy megavpadiny Zapadnoy Sibiri [Granitoid magmatism within the Frolov megadepression of Western Siberia] / A.V. Tugareva, M.L. Moroz, G.A. Chernova, E.V. Belova // News of higher educational institutions. Oil and gas. – 2018. – No. 6. – P. 33–40.
- Ivanov, K.S. Nature and age of metamorphic rocks from the basement of the West Siberian megabasin (according to U-Pb isotopic dates) / K.S. Ivanov, Yu.N. Fedorov, V.S. Ponomarev, V.A. Koroteev, Yu.V. Erokhin // Doklady Earth Sciences. – 2012. – Vol. 443, Part 2. – P. 321-325.

- Ivanov, K.S. Precambrian complexes of the West Siberian plate: problem and solution / K.S. Ivanov, V.A. Koroteev, V.S. Ponomarev, Yu.V. Erokhin // Doklady Earth Sciences. – 2018. Vol. 482, Part 1. – P. 1152–1156.
- Ivanov, K.S. First data on the age at metamorphic schists from the Taz peninsula (Arctic, Western Siberia) / K.S. Ivanov, V.A. Koroteev, Yu.V. Erokhin, V.S. Ponomarev, A.V. Travin // Doklady Earth Sciences. – 2020. – Vol. 491. Part 1. – P. 135-138.
- Khiller, V.V. Chemical composition and age of monazite-(Ce) in granitoids of the crystalline basement from the South Yamal / V.V. Khiller // Preceedings of the Ural State Mining University. – 2020. – Issue 4 (60). – P. 28–34.
- Ponomarev, V.S. Mineralogy of schists from the basement of the southwestern part of the Tazovsky peninsula of the West Siberian megabasin (Lenzitskaya oil exploration area, YNAD) / V.S. Ponomarev, K.S. Ivanov, V.V. Khiller // Preceedings of the Ural State Mining University. – 2019. – No. 2 (54). – P. 20–27.
- Sun, S.S. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes / S.S Sun, W.F. McDonough // Magmatism in Ocean Basins. London, Geol. Soc. Spec. Publ. – 1989. – P. 313-345.
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. P. 312

Благодарность (госзадание)

Работа выполнена в рамках государственной бюджетной темы ИГГ УрО РАН АААА-А18-118052590032-6.

Информация об авторах:

Пономарев Владимир Сергеевич – кандидат геолого-минералогических наук, старший научный сотрудник Института геологии и геохимии УрО РАН; Scopus Author ID: 57197213923, https://orcid.org/0000-0002-1651-1281 (Российская Федерация, 620016, г. Екатеринбург, ул. Академика Вонсовского, д. 15; e-mail: p123v@yandex.ru).

Ерохин Юрий Викторович – кандидат геолого-минералогических наук, ведущий научный сотрудник Института геологии и геохимии УрО РАН; Scopus Author ID: 7004563052, https://orcid.org/ 0000-0002-0577-5898 (Российская Федерация, 620016, г. Екатеринбург, ул. Академика Вонсовского, д. 15; e-mail: erokhin-yu@yandex.ru).

Иванов Кирилл Святославич – доктор геолого-минералогических наук, главный научный сотрудник Института геологии и геохимии УрО РАН; Scopus Author ID: 13309974900, https://orcid.org/ 0000-0002-8292-4658 (Российская Федерация, 620016, г. Екатеринбург, ул. Академика Вонсовского, д. 15; e-mail: ivanovks@igg.uran.ru).

Фаррахова Надежда Николаевна – научный сотрудник Института геологии и геохимии УрО РАН; Scopus Author ID: 57216738078, https://orcid.org/ 0000-0002-3067-4044 (Российская Федерация, 620016, г. Екатеринбург, ул. Академика Вонсовского, д. 15; e-mail: atlantida21@mail.ru).

About the authors:

Vladimir S. Ponomarev – Candidate of Geological and Mineralogical Sciences, Senior Researcher, Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences; Scopus Author ID: 57197213923, https://orcid.org/0000-0002-1651-1281 (15, Academician Vonsovsky Str., Yekaterinburg, 620016, Russian Federation; e-mail: p123v@yandex.ru).

Yury V. Yerokhin – Candidate of Geological and Mineralogical Sciences, Leading Researcher, Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences; Scopus Author ID: 7004563052, https://orcid.org/ 0000-0002-0577-5898 (15, Academician Vonsovsky Str., Yekaterinburg, 620016, Russian Federation; e-mail: erokhin-yu@yandex.ru).

Kirill S. Ivanov – Doctor of Geological and Mineralogical Sciences, Chief Researcher, Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences; Scopus Author ID: 13309974900, https://orcid.org/ 0000-0002-8292-4658 (15, Academician Vonsovsky Str., Yekaterinburg, 620016, Russian Federation; e-mail: ivanovks@igg.uran.ru).

Nadezhda N. Farrakhova – Research Associate, Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences; Scopus Author ID: 57216738078, https://orcid.org/ 0000-0002-3067-4044 (15, Academician Vonsovsky Str., Yekaterinburg, 620016, Russian Federation; e-mail: atlantida21@mail.ru).

Для цитирования:

Пономарев, В.С. Вещественный состав кварц-мусковитовых сланцев из доюрского фундамента Западно-Сибирского мегабассейна (Западно-Яротинская площадь, полуостров Ямал) / В.С. Пономарев, Ю.В. Ерохин, К.С. Иванов, Н.Н. Фаррахова // Известия Коми научного центра Уральского отделения Российской академии наук. Серия "Науки о Земле". – 2022. – № 2 (54). – С. 5-13. УДК 549+552.44(571.121). DOI 10.19110/1994-5655-2022-2-5-13

For citation:

Ponomarev, V.S. Composition of quartz-muscovite shales from pre-Jurassic basement of the West Siberian megabasin (West-Yarotinskaya area, Yamal) / V.S. Ponomarev, Yu.V. Yerokhin, K.S. Ivanov, N.N. Farrakhova // Proceedings of the Komi Science

Известия Коми научного центра Уральского отделения Российской академии наук № 2 (54), 2022 www.izvestia.komisc.ru Center of the Ural Branch of the Russian Academy of Sciences. Earth Sciences Series. – 2022. – No. 2 (54). – Р. 5-13. УДК 549+552.44(571.121). DOI 10.19110/1994-5655-2022-2-5-13

Дата поступления рукописи: 04.06.2021 Прошла рецензирование: 28.01.2022 Принято решение о публикации: 04.04.2022 Received: 04.06.2021 Reviewed: 28.01.2022 Accepted: 04.04.2022