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Abstract

The Lax equations dL/dt = [M, L] play animportant role in
the integrability theory of nonlinear evolution equations and
quantum dynamics. In this work, tensor extensions of the
Lax equations are suggested with M/ : V' — V and L :
TF(V) = V,k=1,2,...0nacomplex vector space V.
These extensions belong to the generalised class of Lax equa-
tions (introduced earlier by Bordemann) dL/dt = py(M)L
where py, is arepresentation of a Lie algebra. Thecase k = 1,
p1 = ad corresponds to the usual Lax equations. The ex-
tended Lax pairs are studied from the point of view of iso-
morphic deformations of multilinear structures, conservation
laws, exterior algebras and cochain symmetries.
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Introduction

The idea of symmetry and conservation laws is fundamen-
tal in natural sciences. Mathematically, it is reduced to the
study of algebraic properties that are invariant under groups
of transformations. From this point of view, linear objects are
much simpler and more symmetric than nonlinear ones. For
instance, nonlinear dynamical systems generally do not ad-
mit conservation laws (integrals of the motion) and manifolds
of their solutions are much harder to describe than those of
linear dynamical systems that always are linear spaces. It is
very tempting then to reduce nonlinear dynamical problems
to linear problems.

The most remarkable success in this direction is the in-
verse scattering method of integration of nonlinear evolution
equations. The method is based on including the nonlinear
evolution into a linear operator L that satisfies a linear evo-
lution equation dL/dt = [M, L] such that the eigenvectors
of L satisfy the linear equation with an operator M, while
the eigenvalues of L do not evolve. The latter property en-
ables a reconstruction of the nonlinear evolution using a spa-
tial scattering theory for the operator L. For ordinary differ-
ential equations, the isospectrality of L is used to find conser-
vation laws of the nonlinear dynamics. The pairs (M, L) are
called Lax pairs, the equations for the operator L are called
Lax equations [1-1].
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AHHoTauua

VpaBHenuss Nakca dL/dt = [M, L] wrpalt BaxHyio
ponb B TEOPUM MHTErPUPYEMOCTH HENUHEWHBIX 3BONIOLUOH-
HbIX YpaBHEHWA M KBAaHTOBOM AWHaMuKe. B paHHoit pabote
npeanaraloTca TeH30pHble paclupeHus ypaBHeHuii Jlakca ¢
M:V - VuL:THV) = V,k=1,2,...HaKouM-
MNeKCHOM BEKTOPHOM npocTpaHcTee V. 3Tu pacwmpenus oT-
HocaTcs K 0606uweHHOMy Knaccy ypaBHeHuii Jlakca (BBeaeH-
HoMy paHee BoppemanHomM) dL/dt = p.(M)L, roe py —
npepcraenenue anrebpsl Ju. Cayvait k = 1, p; = ad coort-
BETCTBYET 06bI4YHbIM ypaBHeHUsIM Jlakca. PacwupeHHble napel
Nakca nayyvaroTca ¢ TOUKKU 3peHNs H30MOPdHbIX AetopMaLmil
MONMAUHENHBIX CTPYKTY P, 3aKOHOB COXPaHEHMs], BHEWHUX an-
re6p M KOLEMHbIX CUMMETPHH.

KnioueBble cnosa:

ypaBHeHus Jlakca, TeH30pHble pacluMpeHus, NonunuHetHas
anre6pa, cummeTpum

In many cases, useful nonlinear relations exist between
solutions to linear dynamical systems. These relations shed
extra light to solutions of the relevant nonlinear problems.
The simplest nonlinear extension of a linear operator is a mul-
tilinear operator. In this work, we realise this idea in replac-
ing the Lax operator L by a multilinear operator that maps
solutions to the linear problem with the operator M again to
solutions to the same problem. We call the resulting equa-
tions tensor extensions of the Lax equations.

We show that the extensions thus introduced have a rich
algebraic meaning, closely related to the theory of Lie alge-
bras and more general multilinear algebraic structures. We
reveal that the extensions we suggest are partial cases of the
generalised Lax equations introduced by Bordemann and re-
lated to representations of Lie algebras other than the ad-
joint representation, on which the usual Lax equations are
based [8]. Close connections between the solutions to the ex-
tended Lax equations and Chevalley-Eilenberg cochain com-
plexes [9,10] are pointed out. Also, the basic construction
presented in this work is another language for description of
isomorphic deformations of multilinear algebraic structures
on vector spaces with respect to dynamical groups of trans-
formations. In this sense, this work is a continuation of the
previous work by the author [11].
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1. Basic construction

Let V' be a complex vector space and let V}, denote the
vector space of k-linear operators L : V¥ — V. For any
k=1, 2, ..., any linear evolution equation on V/

dv/dt = Mv, veV, M(t)eW M
generates the linear evolution equation on V},
dL/dt = pp(M)L, LEVy, pr(M(t)) € End(Vy) (2)

such that the solution operator L is a k-symmetry of Eq. (1),
i.e, maps k-tuples

(Ul(t)7 ceey ’Uk(t))

of solutions to Eq. (1) again to solutions to Eq. (1). By multipli-
cation with respect to ¢, we can verify that

pr(M)L(vy,...,v5) =
= ML(vy,...,v5) — L(Mvy,va,...,0,)—
—L(vy, Mvg, ... ;v;) — ... — L(vi,v9, ..., Mvg). (3)
It is evident that
p(M)L = [M,L], M,LeV,

where [, ] denotes the commutator, so for k& = 1 Eq. (2) is the
usual Lax equation. Using the canonical injection

VE - THWV)

of the Cartesian product V¥ into the k-grade of the tensor
algebra 7'(V'), due to the universal property of 7'(V'), any
solution L € V}, to Eq. (2) can be uniquely identified with
a linear operator L : T*(V) — V. We call the series of
Eq.(2), k = 2, 3, ..., tensor extensions of the Lax equation
for k = 1.

2. Isomorphic deformations and conservation
laws

Eg. (3) enables the solutions to Egs. (2) for any & and any
initial operator L(0) € V to be written in the form

Lt)(v1,...,05) = @#)LO)( @ (t)vy, ..., 27  (t)vy)

(8)
where ®(t) € V isthe operator that maps any vectorv € V'
to the solution o(t) = ®(t)v to Eq. (1) with the initial value
0(0) = v,

dd/dt = M®, ®(0)=1€ V. (5)

Due to Egs. (4), (5), solutions L(t) of the extended Lax equa-
tions (2) are k-multiplicative algebraic structures on V' that
are isomorphic to their initial values L(0) under the evolu-
tion of Eq. (1). Egs. (2) describe then isomorphic deformations
of k-multiplicative algebraic structures on V. In fact, Eq. (4)
is equivalent to

L)@ (), ..., ®(t)v) = BE)L(0)(v1, .. ., vp).

(6)

For finite values of time, the fundamental operator ®(t) of
Eq. (1) is an isomorphism between L(0) and L(t). By the ac-
tion (6), the group generated by the operators ®(¢)

G =gen{®(t),t € R} C GL(V) (7

maps any structure L(0) to structures isomorphic to L(0).

Stationary solutions L(¢) = L(0) to Egs. (2) that do not
explicitly depend on time describe k-multiplicative structures
that are automorphic with respect to the operators ®(t) for
all values of ¢,

L(O)(®()vy, ...

The group G of Eq. (7) is then a subgroup of the automor-
phisms group of Z(0),

G C Aut(L(0)).

,P(t)v) = () L(0) (vy, ..., k).

For k > 1, evolutions under Eg. (1) on the vector space
V' generate symmetries of the stationary solutions to Eq. (2)
as multiplicative k-linear algebraic structures on V. On the
other hand, by definition, solutions to Eq. (2) are k-symme-
tries of Eq. (1) as they map k-tuples of solutions to Eq. (1) again
to solutions to Eq. (1) . We can say that Egs. (1), (2) describe
mutual symmetries of the extended Lax pair (M, L).

The operator py, (M) : Vi, — Vj as a linear function of
M defined by Eq. (3) has the property

[ok(M), pi(N)] = pr([M, N])

Hence, the linear map

Pk - Vi— End(Vk)

VYM,N €V,

is a representation of the general Lie algebra V; = g[(V") on
the vector space V;, i.e,, a Lie algebra homomorphism

J gI(V) — g[(Vk) (8)

Thus, each Eq. (2) is a partial case of the generalised Lax
equation suggested by Bordemann [8]. For the usual Lax
equation k = 1, we have p; = ad is the adjoint representa-
tion.

By exponentiation, the representation p;, of the Lie alge-
bra gl(V') generates the linear action (representation) gy, of
the general Lie group GL(V') on the same space Vj. Then
any scalar function f : V;, — C invariant under this action,

f(ﬁk(m)L) = f(L), Vm e GL(V), LeV, 9

is a conservation law for Eq. (2), i.e, the values f(L(t))
are time-independent and do not change along the solutions
L(t). Itis directly seen by differentiation of Eqg. (9) by m at
the identity element e of the group GL(V') and the fact that
M belongs to the tangent space 7.GL(V). For k = 1 and
a finite-dimensional vector space V/, we have
pr =ad, pi(m)L =mLm™*
and the trace polynomial functions
fo(L)=Tr (L"), n=12,...,

are conservation laws for the usual Lax equation.
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In fact, functions f satisfying Eq. (9) are conservation laws
for Eq. (2) with any operator M. For k > 1, the explicit de-
scription and even existence of such functions is a nontrivial
problem even if V' is a finite-dimensional vector space. The
“isospectrality” of Eq. (2) is closely related to symmetries of
the operator M and manifests itself in the following obser-
vations.

Let V' have a finite dimension [V and a basis vy, ..., vy.
Any initial operator L(0) € V} is defined by its values on the
basic vectors of the tensor k-grade T%(V'),

N

’Uik) = Z )\51) 74k

s=1

L(O)(Uil, N (10)

where the indices iq, ..., independently take all values
from the set {1,.. N} and )\21 . are complex coeffi-
cients, the “structure constants” of the multiplicative alge-
braic structure L(0). The solution L(t) to Eqg. (2) with the
initial value L(0) has the property

N

Z)\“ 5 0s(t), ()

where v;(t) are the solutions to Eq. (1) with the initial val-

ues v; and the coefficients A( ?) i, remain time-independent.
This directly follows from Eq. (6) for any k. This does not mean
(even for k = 1) that the structure constants of the initial op-
erator L(0) are conservation laws for the solution L(t). In
fact, according to Eq. (4),

L(t) (v, (1), . ..

7'Ulk

N

L(t)(vil,... ,’Uik) = Z)\El) zk( )’Us —
,q)_l(t>’l}ik).

= (L)@ (t)vyy, - -

The expansion of the initial value by Eq. (10) generates the
evolution

AG)

010

of the structure constants of L(O) to those of L(t). This evo-
lution is another characteristic of the isomorphism between
L(0) and L(t).

The special case where Eq. (2) is explicitly solved is
where the operator M is time-independent and the basis
v1, ..., Uy iscomposed of eigenvectors of M with eigenval-
ues my, ..., my. In this case, ®(t) = e'™ and the group
G defined in Eq. (7) is a 1-parameter subgroup of GL(V):
®(t + s) = D(t)P(s). According to Eg. (&), the evolution
(12) takes the simple form

— )\ i (1) (12)

tﬂf)gi) i )\(,5)

1100

A ()=

1.1k
k
o =my =S m,
910 S ip*
p=1

It follows from Eq. (13) that the structural constants of the ini-
tial operator L(0) that satisfy the condition

(13)

6O A

1. lk 1. lk

=0

do not change under the evolution L(¢), i.e., are conservation
laws of Eq. (2). In particular, the zero structural constants

are always conserved. A nonzero structural constant Agf)lk

is conserved if the “resonance” d)n i, = 0 takes place be-
tween the eigenvalues m, ..., my of the operator M.
The stationary solutions L(O) to Eq. (2) that are automor-
phic with respect to the group G are defined then by the con-
dition
8 WAL

i1oin My Zk—O VS, 01,y k.

It follows, for instance, that if all the eigenvalues are “non-
resonant”

#0 Vs, iy,...,10

then all stationary solutions to Eg. (2) are trivial L(0) = 0.

Note that the case & = 2 with skew-symmetric bilinear
operators L corresponds to Lie algebraic structures if addi-
tionally the Jacobi identity is satisfied. The finite limit transi-
tions

7«1 ik

M) = A

iriz irin t — +o0,

are closely related to Inonii-Wigner contractions and lead to
stationary solutions to Eqg. (2), automorphic with respect to
the “dynamical” group G. This situation has been considered
in more detail in the previous work by the author [11].

For k = 1 (regardless of whether M is time-independent
or not), eigenvectors of the operator L(¢) € V; that evolves
under the usual Lax equation are solutions to Eq. (1) and the
relevant eigenvalues are time-independent (being eigenval-
ues of the initial operator L(0)). This underlies the inverse
scattering method of integration of nonlinear evolution equa-
tions [1-7].

3. Exterior algebras and cochain symmetries

It can be verified that, forany k = 1, 2, ...,if L' €
and L € V,, are solutions to Eq. (2) then the operator compo-
sition 'L € V}, is also a solution to Eq. (2). In this sense, the
left multiplication by the solutions to the usual Lax equation
is a symmetry of the extended Lax equations (2).

For any M and any k, the operator py (M) : Vi, — Vi is
invariant under the action of the symmetric group Sy on V.

For any permutation o € Sy, of the indices 1, ..., k,
pr(M)o(L) = o(px(M)L), o)
O—(L)(,Ulv cee 7Uk) = L(Ua(l)v ey vn(k))-

Thus, S}, is a symmetry group for Eq. (2). For any solution
L(t) and any permutation o € S, the “braided” operator
o(L(t)) is also a solution.

This symmetry and the idea of considering only k-tuples
of linearly independent solutions to Eq. (1) leads to the restric-
tion from the infinite-dimensional tensor algebra 7'(V) to the
finite-dimensional exterior (Grassmann) algebra /\ (V) that
is a quotient of the tensor algebra with respect to the left-
right ideal generated by the tensors of the form v ® v. In
terms of Eq. (2), it means that only alternating &-linear oper-
ators L are to be considered, i.e., those with

o(L) =sgn(o)L, o € Sk.
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The vector spaces Vj will denote now the vector spaces of
alternating operators L : V¥ — V. Each such operator can
be identified with a linear operator from the k-grade of the
exterior algebra, L : A"(V) — V. We assume that the
vector space V is finite-dimensional, dim V' = N.

The construction related to the representation (8) can be
extended to a representation of any Lie algebra. In fact, let
a be a Lie algebra and let

p:a—gl(V) (15)
be its representation on V. Then the composition
T = prp s a = gl(Vi)

is a representation of a on V.. The extended Lax equations
(2) are written then as

dL/dt = mg(a)L, a € a.

Let now the underlying vector space of the Lie algebra
a be V' and the representation p in Eq. (15) be the adjoint
representation. This enables the Chevalley-Eilenberg cochain
complex to be built,

|7AE VAN v AN INSL IR /

where § : Vi,_1 — Vi, 62 = 0, is the exterior derivative

(0L)(v1,...,v) =
k
Z V¥ o(ve)L(v, ..oy Dy e vy UR)+
+Z nggL [Vs, Vst ], U1y« oy Dy vovy Dgry oo Vg )y

s<s’

k>1, (6L)v=p(v)L, LeV.

Here [, ] is the Lie bracket in a and the hat means that the rel-
evant variable should be omitted [9,10]. The solutions L € V},
to Eq. (2) are then naturally identified with (time-dependent)
k-cochains of this complex.

It can be verified that the exterior derivative ¢ is a sym-
metry of the set of the extended Lax equations (2). In fact,
if L € V} is a solution in the k-grade then 0L € Vj, 1 is
a solution in the next (k + 1)-grade. We call this symme-
try cochain symmetry. In the case of the exterior algebra,
according to Egs. (4), (5), for k' = 1, N the extended Lax
equations (2) are solved explicitly as

L(t)=o@)L0)> (), k=1,
(w:dig%Lm% k= N.

4. Conclusion

It has been demonstrated that the classical Lax equations,
important in the integrability theory and quantum dynamics,
can be extended in a manner closely related to symmetries
of multilinear algebraic structures and representations of Lie
algebras other than the adjoint.

10.
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