О влиянии односторонних связей на устойчивость и колебания упругих колец

В.Ю. Андрюкова

Физико-математический институт ФИЦ Коми НЦ УрО РАН, г. Сыктывкар

veran@list.ru

Аннотация

В работе рассматриваются вопросы устойчивости кругового кольца, сжимаемого равномерно распределенными центральными силами, при наличии односторонних ограничений на перемещения. Во второй части статьи решена задача о колебаниях кольца, подкрепленного нитями одностороннего действия. Задачи сводятся к решению некоторой вариационной проблемы при ограничениях на искомые функции в виде линейных уравнений и неравенств.

Ключевые слова:

устойчивость, кольцо, вариационная задача, точки бифуркации, односторонние ограничения, колебания

Введение

В настоящей работе рассматриваются конструктивнонелинейные задачи устойчивости и свободных колебаний колец [1], подкрепленных нерастяжимыми нитями, так что расстояние между точками прикрепления концов нити не может увеличиваться, и они не выдерживают сжимающих усилий. Эти задачи не могут быть линеаризованы, обладая нелинейностью как существенным свойством, так как их напряженно-деформированное состояние описывается негладкими функциями. При математической формализации расчет на устойчивость сводится к отысканию параметра нагрузки, при котором происходит бифуркация решения задачи вариационного исчисления при наличии ограничений на искомые функции в виде неравенств. При конечномерной аппроксимации получаем задачу нахождения параметра нагрузки, при которой происходит бифуркация решений задач нелинейного программирования. Последняя задача может быть сведена к идентификации условной положительной определенности квадратичных форм на конусах. В общем случае требуется применять методы глобальной оптимизации, например метод ветвей и границ [2]. Некоторые задачи устойчивости и закритического поведения при наличии односторонних ограничений на перемещения рассмотрены в работах [3-6].

Устойчивость колец с односторонним подкреплением

Рассмотрим задачу устойчивости упругих колец, под-

On the influence of unilateral bonds on the stability and oscillations of elastic rings

V.Yu. Andryukova

Institute of Physics and Mathematics, Federal Research Centre Komi Science Centre, Ural Branch, RAS, Syktyvkar

veran@list.ru

Abstract

The paper deals with the issues of stability of a circular ring compressed by uniformly distributed central forces in the presence of one-sided restrictions on displacements. In the second part of the article, the problem of oscillations of a ring supported by single-acting threads is solved. The problems are reduced to solving some variational problem under restrictions on the desired functions in the form of linear equations and inequalities

Keywords:

stability, ring, variational problem, bifurcation points, onesided constraints, oscillation

крепленных упругими нитями, которые не воспринимают сжимающих усилий. Пусть один конец нити прикреплен к неподвижному центру кольца, другой – к некоторой точке кольца. Предположим, что нить является нерастяжимой, т.е. в результате деформации расстояние между центром кольца и точкой прикрепления не может увеличиваться. Обозначим через ϑ центральный угол, $w(\vartheta)$ – радиальное перемещение (прогиб), $v(\vartheta)$ – касательное перемещение ние точек кольца.

Отметим, что из условия несжимаемости оси кольца следует равенство

$$v' = -w.$$
 (1)

Пусть нити расположены так часто, что их можно считать непрерывно распределенными по кольцу. Тогда задача на устойчивость сводится к отысканию таких значений силы P, при которых вариационная проблема

$$J(w) = \frac{D}{2R^3} \int_0^{2\pi} (w'' + w)^2 d\vartheta - \frac{P}{2} \int_0^{2\pi} (w'^2 - w^2) d\vartheta \to \min_w$$
(2)

имеет нетривиальное решение при граничных условиях периодичности и ограничениях

$$w(\vartheta) \le 0. \tag{3}$$

Здесь D — жесткость на изгиб в плоскости кольца, R — радиус кольца. Первый интеграл в (2) представляет собой упругую энергию, второй — работу сил нормального давления.

Выпишем уравнение Эйлера для функционала (2):

$$w^{IV} + (2+k^2)w'' + (1+k^2)w = 0,$$
 (4)

где $k^2 = \frac{PR^3}{D}$. Соответствующее характеристическое уравнение

$$\lambda^4 + (2+k^2)\lambda^2 + (1+k^2) = 0$$

имеет решения

$$\lambda_{1,2} = \pm i; \ \lambda_{3,4} = \pm i\sqrt{1+k^2}.$$

Тогда функция прогиба представима в виде

 $w = A_1 \sin \vartheta + A_2 \cos \vartheta + A_3 \sin \alpha \vartheta + A_4 \cos \alpha \vartheta,$ (5)

где $\alpha = \sqrt{1+k^2}.$

Зафиксируем некоторый угол $\beta > 0$. Будем считать, что $w(\vartheta) < 0, \ \vartheta \in (0, \beta)$ и $w(\vartheta) \equiv 0, \ \vartheta \in (\beta, 2\pi)$. Первая производная $w'(\vartheta)$ должна быть непрерывной при $\vartheta \in (0, 2\pi)$, тогда функция w удовлетворяет граничным условиям

$$w(0) = 0, w'(0) = 0, w(\beta) = 0, w'(\beta) = 0.$$
 (6)

Подставляя (5) в (6), получим систему линейных уравнений

$$\begin{cases}
A_2 + A_4 = 0, \\
A_1 + \alpha A_3 = 0, \\
A_1 \sin \beta + A_2 \cos \beta + \\
+ A_3 \sin(\alpha \beta) + A_4 \cos(\alpha \beta) = 0, \\
A_1 \cos \beta - A_2 \sin \beta + \\
+ \alpha A_3 \cos(\alpha \beta) - \alpha A_4 \sin(\alpha \beta) = 0.
\end{cases}$$
(7)

Выражая из первых двух уравнений последней системы A_1 и A_4 , получим

$$\begin{cases} A_4 = -A_2, \\ A_1 = -\widetilde{\alpha}A_3. \end{cases}$$
(8)

Третье и четвертое уравнения в системе (7) примут вид

$$\begin{pmatrix} -\alpha A_3 \sin \beta + A_2 \cos \beta + \\ +A_3 \sin(\alpha \beta) - A_2 \cos(\alpha \beta) = 0, \\ -\alpha A_3 \cos \beta - A_2 \sin \beta + \\ +\alpha A_3 \cos(\alpha \beta) + \alpha A_2 \sin(\alpha \beta) = 0. \end{cases}$$
(9)

После упрощения имеем

$$\begin{cases}
A_3(\sin(\alpha\beta) - \alpha\sin\beta) + \\
+A_2(\cos\beta - \cos(\alpha\beta)) = 0, \\
A_3(\alpha\cos(\alpha\beta) - \alpha\cos\beta) + \\
+A_2(\alpha\sin(\alpha\beta) - \sin\beta) = 0.
\end{cases}$$
(10)

Система уравнений имеет нетривиальное решение, если ее определитель равен нулю, т.е.

$$\Delta(\alpha) = (\sin(\alpha\beta) - \alpha\sin\beta)(\alpha\sin(\alpha\beta) - \sin\beta) - (\cos\beta - \cos(\alpha\beta))(\alpha\cos(\alpha\beta) - \alpha\cos\beta) = = -2\alpha + 2\alpha\cos(\alpha\beta)\cos\beta + \sin(\alpha\beta)\sin\beta + \alpha^2\sin(\alpha\beta)\sin\beta = 0.$$
 (11)

Решая уравнение (11) относительно неизвестной α , получим функцию $\alpha = \alpha(\beta)$. При заданном β уравнение имеет бесконечное число корней. Очевидно, что $\alpha = 1$ является корнем уравнения при любом β . Заметим, что при $\alpha = 1$ параметр k = 0, значит, и сила P равна нулю. Далее находим форму прогиба по формулам (5). Несложно убедиться, что формула (5) при $\alpha = 1$ дает перемещение кольца как жесткого целого. Следовательно, надо находить минимальный корень уравнения (11), удовлетворяющий условию $\alpha > 1$. Также необходимо выполнение знаковых ограничений (3). Чем больше угол β , тем меньше k^2 , а значит и сила P. Значения критического параметра Р в зависимости от значений угла β приведены в табл. 1.

Таблица 1 Значения критического параметра α в зависимости от угла β Table 1

Values of critical parameter α depending on angle β

β	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$
α	4.9801	4.2915	3.2136	3	2.4841

Численные эксперименты при $\beta > \pi$ показали, что график w будет менять знак на интервале $(0,\beta)$, т.е. ограничения неотрицательности на функцию w не будут выполняться.

Таким образом, минимальное критическое значение параметра $\alpha=3$, откуда находим: $k^2=8$, что соответствует равенству $P=8D/R^3$. Заметим, что критическое давление для неподкрепленного кольца определяется формулой $P=3D/R^3$.

Случай центральной нагрузки. Рассмотрим сначала случай плоской деформации. Тогда задача с односторонними ограничениями на перемещения может быть сведена к вариационной проблеме

$$\widetilde{J} = \frac{D}{2R^3} \int_0^{2\pi} (w'' + w)^2 d\vartheta \to \min$$
 (12)

при ограничениях

$$J_1 = \frac{1}{2} \int_0^{2\pi} (w'^2 - 2w^2) d\vartheta = 1,$$
 (13)

$$w \ge 0.$$
 (14)

Нетрудно показать, что решение задачи (12)–(14) можно искать среди функций строго положительных на некотором интервале $[0, \vartheta_0]$ и равных нулю, если $\vartheta \notin [0, \vartheta_0]$. Функцию прогиба будем считать равной

$$w = A_1 \sin \tilde{\alpha} \vartheta + A_2 \cos \tilde{\alpha} \vartheta + A_3 \sin \tilde{\beta} \vartheta + A_4 \cos \tilde{\beta} \vartheta, \quad (15)$$

где

$$\alpha = \sqrt{\frac{2+k^2 - \sqrt{k^4 - 4k^2}}{2}},$$

$$\beta = \sqrt{\frac{2+k^2 + \sqrt{k^4 - 4k^2}}{2}}, \ k^2 = \frac{P}{EJ}.$$

Функция w(artheta) должна удовлетворять граничным условиям

$$w(0) = w(\vartheta_0) = 0, \ w'(0) = w'(\vartheta_0) = 0.$$
 (16)

Подставляя (15) в (16), получим систему уравнений

$$\begin{pmatrix}
A_2 + A_4 = 0, \\
\widetilde{\alpha}A_1 + \widetilde{\beta}A_3 = 0, \\
A_1 \sin \widetilde{\alpha}\vartheta_0 + A_2 \cos \widetilde{\alpha}\vartheta_0 + \\
+ A_3 \sin \widetilde{\beta}\vartheta_0 + A_4 \cos \widetilde{\beta}\vartheta_0, \\
A_1 \widetilde{\alpha} \cos \widetilde{\alpha}\vartheta_0 - A_2 \widetilde{\alpha} \sin \widetilde{\alpha}\vartheta_0 + \\
+ A_3 \widetilde{\beta} \cos \widetilde{\beta}\vartheta_0 - A_4 \widetilde{\beta} \sin \widetilde{\beta}\vartheta_0.
\end{cases}$$
(17)

Неизвестными в системе (17) будут коэффициенты A_1, A_2, A_3, A_4 . Выражая из первых двух уравнений последней системы A_1, A_4 , получим

$$\begin{cases} A_4 = -A_2, \\ A_1 = -\widetilde{\beta}/\widetilde{\alpha}A_3. \end{cases}$$
(18)

Тогда последние два уравнения системы (17) можно упростить

$$\begin{cases}
A_3(-\frac{\tilde{\beta}}{\tilde{\alpha}}\sin\tilde{\alpha}\vartheta_0 + \sin\tilde{\beta}\vartheta_0) + \\
+A_2(\cos\tilde{\alpha}\vartheta_0 - \cos\tilde{\beta}\vartheta_0) = 0, \\
A_3(\tilde{\beta}\cos\tilde{\beta}\vartheta_0 - \tilde{\alpha}\sin\tilde{\alpha}\vartheta_0) + \\
+A_2(\tilde{\beta}\sin\tilde{\beta}\vartheta_0 - \tilde{\alpha}\sin\tilde{\alpha}\vartheta_0) = 0.
\end{cases}$$
(19)

Определитель системы (19) имеет вид

$$\Delta = (\sin \widetilde{\beta} \vartheta_0 - \frac{\widetilde{\beta}}{\widetilde{\alpha}} \sin \widetilde{\alpha} \vartheta_0) (\widetilde{\beta} \sin \widetilde{\beta} \vartheta_0 - \widetilde{\alpha} \sin \widetilde{\alpha} \vartheta_0) -$$

$$-(\cos\tilde{\alpha}\vartheta_0 - \cos\beta\vartheta_0)(\beta\cos\beta\vartheta_0 - \tilde{\alpha}\sin\tilde{\alpha}\vartheta_0).$$
 (20)

Для существования нетривиального решения краевой задачи необходимо и достаточно, чтобы

$$\Delta = \Delta(k; \vartheta_0) = 0.$$
(21)

Нетривиальные решения системы (19) при $k=k_1$ или $k=k_2$ находим следующим образом. Полагая $A_3=1,$ находим

$$A_2 = \frac{\sin(\widetilde{\alpha}k) - \sin(\widetilde{\beta}k)}{\cos(\widetilde{\alpha}k) - \cos(\widetilde{\beta}k)},$$

Первые два корня уравнения (21) приведены в табл. 2.

Таблица 2

Значения критического параметра k

Critical parameter values k

Table 2

ϑ_0	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{3\pi}{4.3}$				
k_1	4.3154	4.0463	4.3132				
k_2	4.4849	4.3099	4.3132				

Рисунок 1. Форма прогиба $w(\vartheta)$ при $\vartheta_0=rac{2\pi}{3}$, $k=k_1$ (A); форма прогиба $w(\vartheta)$ при $\vartheta_0=rac{2\pi}{3}, k=k_2$ (B).

(B)

(A)

Figure 1. Deflection shape $w(\vartheta)$ at $\vartheta_0 = \frac{2\pi}{3}$, $k = k_1$ (A); deflection shape $w(\vartheta)$ at $\vartheta_0 = \frac{2\pi}{3}$, $k = k_2$ (B).

Рисунок 2. Форма прогиба $w(\vartheta)$ при $\vartheta_0 = \frac{3\pi}{4}, k = k_1$ (A); форма прогиба $w(\vartheta)$ при $\vartheta_0 = \frac{3\pi}{4}, k = k_2$ (B).

Figure 2. Deflection shape $w(\vartheta)$ at $\vartheta_0 = \frac{3\pi}{4}, k = k_1$ (A); deflection shape $w(\vartheta)$ at $\vartheta_0 = \frac{3\pi}{4}, k = k_2$ (B).

При $k = k_1$ для $\vartheta_0 \neq \frac{3\pi}{4}$ прогиб $w(\vartheta)$ меняет знак (рис. 2 А), следовательно, ограничение (14) не выполняется. Подходящим (т.е. удовлетворяющим односторонним ограничениям) является второй корень $k = k_2$ при $\vartheta_0 < \frac{3\pi}{4}$ (рис. 2 В). Рассмотрев график производной $w'(\vartheta)$, замечаем, что при $\vartheta_0 = \frac{3\pi}{4}$ производная обращается в ноль на интервале [a, b] ровно три раза. Это означает, что сама функция $w(\vartheta)$ на этом интервале имеет три точки экстремума, откуда следует, что функция меняет знак на этом интервале (рис. 2 В). Если $\vartheta_0 = \frac{3\pi}{4.3}$, то корни уравнения (21) будут кратными. С другой стороны, чем больше ϑ_0 , тем меньше значение критического параметра k. Таким образом, значение безразмерного параметра критической силы при наличии односторонних ограничений на перемещения (14) будет равно

$$k^2 = k_1^2 = k_2^2 = \frac{PR^3}{D} = 18.6044.$$
 (22)

В случае плоской деформации при аппроксимации сплайнами прогиба $w(\vartheta)$ при m=72 получено следующее значение безразмерного параметра:

Ì

$$\widetilde{P} = \frac{PR^3}{D} = 18.5854.$$

Сравнивая это значение с (22), находим, что точность численного решения задачи равна

$$\frac{18.6044 - 18.5854}{18.6044} = 0.00102 = 0.1\%$$

Отношение $\frac{\tilde{P}}{P_1} = \frac{18.5854}{4.5} = 4.1301$. А из формулы (22) $\frac{18.6044}{4.5} = 4.1343$. Таким образом, подкрепление нитями увеличивает критическую нагрузку кольца в 4.13 раза.

2. Колебания колец

Координаты точек деформированного кольца имеют вид

$$\begin{cases} x(\vartheta) = (R + w(\vartheta))\cos\vartheta - v(\vartheta)\sin\vartheta, \\ y(\vartheta) = (R + w(\vartheta))\sin\vartheta + v(\vartheta)\cos\vartheta. \end{cases}$$
(23)

Упругая энергия деформированного кольца, подкрепленного нитями с жесткостью *с*, записывается в виде

$$U = \frac{D}{2R^3} \int_0^{2\pi} (w'' + w)^2 d\vartheta + \frac{c}{2} \int_0^{2\pi} w^2 d\vartheta.$$
 (24)

Кинетическая энергия кольца описывается уравнением

$$T = \frac{R\rho}{2} \int_{0}^{2\pi} (\dot{w}^2 + \dot{v}^2) d\vartheta.$$
 (25)

Здесь ρ – линейная плотность материала. Условие несжимаемости оси кольца ${x'}^2 + {y'}^2 = R^2$ после преобразований примет вид: v' = -w.

Для получения уравнений колебания кольца применим принцип наименьшего действия: если T – кинетическая энергия системы, U – потенциальная энергия, необходимо найти минимум функционала действия:

$$J = \int_{t_0}^{t_1} (T - U) dt.$$

В нашем случае

$$J = \int_{t_0}^{t_1} \left[\frac{R\rho}{2} \int_{0}^{2\pi} (\dot{v}^2 + \dot{v}'^2) d\vartheta - \frac{D}{2R^3} \int_{0}^{2\pi} (v''' + v')^2 d\vartheta - \frac{c}{2} \int_{0}^{2\pi} v'^2 d\vartheta \right] dt.$$
 (26)

Выпишем уравнение Эйлера-Остроградского:

$$R\rho(\ddot{v}-\ddot{v}'') = \frac{D}{R^3}(v^{VI}+2v^{IV}+v'')+cv''.$$
 (27)

Решение уравнения (27) ищем в виде:

$$v(\vartheta, t) = \xi(t)\eta(\vartheta).$$
(28)

Применяя метод разделения переменных, приходим к двум уравнениям:

$$\ddot{\xi} + \frac{D}{R^4\rho}\lambda^2\xi = 0,$$
(29)

$$\eta^{VI} + 2\eta^{IV} + \tilde{c}\eta'' + \lambda^2(\eta - \eta'') = 0.$$
 (30)

Уравнение (29) означает, что движение носит колебательный характер, а уравнение (30) описывает форму колебаний.

Решение (29) имеет вид

$$\xi = C_1 \sin \omega_k t + C_2 \cos \omega_k t, \tag{31}$$

где $\omega_k = \sqrt{\frac{D\lambda_k^2}{R^4 \rho}}$ - частота собственных колебаний. Решение уравнения (30) должно быть 2π -периодическим. Этому условию удовлетворяет функция вида:

$$\eta_k = \sum_{k=1}^{\infty} (a_k(t)\sin(k\vartheta) + b_k(t)\cos(k\vartheta)).$$
 (32)

Подставляем ряд (32) в (30) и с учетом ортогональности получаем

$$\eta = \left[-k^6 + 2k^4 - (\widetilde{c} - p^2)k^2 + \lambda^2\right](\sin(k\vartheta) + \cos(k\vartheta)).$$
 (33)

Нетривиальное решение существует, если

$$-k^{6} + 2k^{4} - (\tilde{c} - p^{2})k^{2} + \lambda^{2} = 0.$$

Откуда находим зависимость частоты колебаний от номера гармоники

$$\lambda_k^2 = \frac{k^6 - 2k^4 + \tilde{c}k^2}{k^2 + 1}.$$
(34)

Общее решение (27) дается формулой:

$$v(\vartheta, t) = \sum_{k=1}^{\infty} \left(C_{1k} \sin(\omega_k t) + C_{2k} \cos(\omega_k t) \right) \sin(k\vartheta) + \sum_{k=1}^{\infty} \left(\widetilde{C_{1k}} \sin(\omega_k t) + \widetilde{C_{2k}} \cos(\omega_k t) \right) \cos(k\vartheta), \quad (35)$$

 $+ \sum_{k=1} \left(C_{1k} \sin(\omega_k t) + C_{2k} \cos(\omega_k t) \right) \cos(k\vartheta).$ (35)

Для определения движения необходимы начальные условия при $t=0\!\!:$

$$v(\vartheta, 0) = v_0(\vartheta), \quad \dot{v}(\vartheta, 0) = \dot{v}_0(\vartheta),$$
 (36)

где v_0 и \dot{v}_0 — известные значения. Разлагая их в ряд Фурье и используя (35), можно найти коэффициенты $C_{1k}, C_{2k}, \widetilde{C_{1k}}, \widetilde{C_{2k}}.$

Известия Коми научного центра Уральского отделения Российской академии наук № 4 (62), 2023 Серия «Физико-математические науки»

www.izvestia.komisc.ru

26

Колебания кольца, подкрепленного нитями одностороннего действия. Предположим, что кольцо подкреплено нитями, которые не воспринимают сжимающих усилий, т.е. упругая энергия нитей определяется формулой

$$\frac{c}{2} \int_{0}^{2\pi} w_{+}^{2} d\vartheta, \qquad (37)$$

где w_+ — положительная срезка функции

$$w_{+} = \max\{0, w\} = \frac{w + |w|}{2}.$$

В данном случае функционал Ј принимает вид

$$J = \int_{t_0}^{t_1} \left[\frac{R\rho}{2} \int_{0}^{2\pi} (\dot{w}^2 + \dot{v}^2) d\vartheta - \frac{D}{2R^3} \int_{0}^{2\pi} (w'' + v')^2 d\vartheta - \frac{c}{2} \int_{0}^{2\pi} w_+^2 d\vartheta \right] dt.$$
 (38)

Перемещения точек кольца ищем в виде

$$v = \sum_{k=1}^{N} (A_k(t)\sin(k\vartheta) + B_k(t)\cos(k\vartheta)), \qquad (39)$$

$$w = \sum_{k=1}^{N} (kA_k(t)\cos(k\vartheta) - kB_k(t)\sin(k\vartheta)).$$
 (40)

Функционал (38) принимает стационарное значение. Выпишем для него уравнения Эйлера относительно A_k и B_k

$$R\rho\pi(1+k^2)\ddot{A_k} + \frac{D}{R^3}\pi(k^3-k)^2A_k + c\int_0^{2\pi}S_+k\cos(k\vartheta)d\vartheta = 0, \quad (41)$$

$$R\rho\pi(1+k^{2})\ddot{B}_{k} + \frac{D}{R^{3}}\pi(k^{3}-k)^{2}B_{k} - c\int_{0}^{2\pi}S_{+}k\sin(k\vartheta)d\vartheta = 0, \quad (42)$$

где $S_+ = \left[\sum_{j=1}^N (jA_j\cos(j\vartheta) - jB_j\sin(j\vartheta))\right]_+.$ Выражаем вторые производные

$$\ddot{A_k} = -\frac{D(k^3 - k)^2}{R^4 \rho (1 + k^2)} A_k - -\frac{c}{R\rho \pi (1 + k^2)} \int_0^{2\pi} S_+ k \cos(k\vartheta) d\vartheta, \quad (43)$$

$$\begin{split} \ddot{B}_{k} &= -\frac{D(k^{3}-k)^{2}}{R^{4}\rho(1+k^{2})}B_{k} + \\ &+ \frac{c}{R\rho\pi(1+k^{2})}\int_{0}^{2\pi}S_{+}k\sin(k\vartheta)d\vartheta. \end{split} \tag{44}$$

Введем вектор

$$V = (A_1, ..., A_N, B_1, ..., B_N)^T.$$
 (45)

Уравнения (43), (44) запишем в виде

$$\ddot{V} = f(V), \tag{46}$$

где

$$f_j = -\frac{D(k^3 - k)^2}{R^4 \rho (1 + k^2)} A_k - \frac{2\pi}{\ell}$$

$$-\frac{c}{R\rho\pi(1+k^2)}\int_{0}^{2\pi}S_{+}k\cos(k\vartheta)d\vartheta \qquad (47)$$

при $j=1,\ldots,N$ и

$$f_j = -\frac{D(k^3 - k)^2}{R^4 \rho (1 + k^2)} B_k +$$

$$+\frac{c}{R\rho\pi(1+k^2)}\int_{0}^{2\pi}S_{+}k\sin(k\vartheta)d\vartheta$$
 (48)

при $j=N+1,\ldots,2N.$ Система (46) эквивалентна системе, состоящей из дифференциальных уравнений первого порядка

$$\begin{cases} \dot{V} = Z, \\ \dot{Z} = f(V). \end{cases}$$
(49)

Для решения последней использовался метод Рунге-Кутта 4-го порядка.

Результаты и их обсуждения

На рис. З представлены графики собственных форм колебаний кольца радиуса R=10 м с жесткостью нитей c=35 Н/мм, цилиндрической жесткостью D=66.7 Н·м при разных начальных условиях $w_0=1.5\sin(2\vartheta)$ для графиков слева и $w_0=2\cos(3\vartheta)$ для графиков справа.

Известия Коми научного центра Уральского отделения Российской академии наук № 4 (62), 2023 Серия «Физико-математические науки» www.izvestia.komisc.ru

Рисунок 3. График собственных форм колебаний кольца при A) t = 0, B) t = 2.8, C) t = 6.0, D) t = 8.0, E) t = 16. Figure 3. Graph of the eigenmodes of the ring at A) t = 0, B) t = 2.8,

насти и состояние состояние (эфнасти и состояние (эф-Наблюдается эффект возврата в начальное состояние (эф-

фект Ферми-Паста-Улама). Энергия остается локализованной в начальных и нескольких соседних гармониках. При больших значениях t наблюдается почти полный возврат энергии в начальную гармонику. К примеру, для рисунков слева разница между начальным и конечным состояниями равна $\max\{v - v_0\} \le 0.039, \max\{w - w_0\} \le 0.074$. Для рисунков справа $\max\{v - v_0\} \le 0.040, \max\{w - w_0\} \le 0.036$.

Таким образом, подкрепление колец нерастяжимыми нитями сможет существенно увеличить критическую нагрузку. Результаты работы могут оказаться полезными при расчетах и проектировании на прочность и устойчивость тонкостенных конструкций.

Литература

 Пановко, Я.Г. Основы прикладной теории упругих колебаний / Я.Г. Пановко. – Москва: Машиностроение, 1967.

- Сухарев, А.Г. Глобальный экстремум и методы его отыскания / А.Г. Сухарев // Математические методы и исследования операций. – Москва: Издательство МГУ, 1981. – С. 4–37.
- Алфутов, Н.А. Влияние односторонних связей на устойчивость цилиндрических оболочек при осевом сжатии / Н.А. Алфутов, А.Н. Еремичев // Расчеты на прочность. – Москва: Машиностроение, 1989. – С. 179–180.
- Феодосьев, В.И. Избранные задачи и вопросы по сопротивлению материалов / В.И. Феодосьев. – Москва: Наука, 1967. – 376 с.
- Andryukova, V.Y. Nonsmooth problem of stability for elastic rings / V.Y. Andryukova, V.N. Tarasov // Abstracts of the Int. Conf. "Constructive Nonsmooth Analysis and Related Topics" dedicated to the memory of Professor V.F. Demyanov. Part I. – Saint-Petersburg: Institute of Electrical and Electronic Engineers, 2017. – P. 213–218.
- Tarasov, V.N. Nonsmooth problems in the mechanics of elastic systems / V.N. Tarasov // Abstracts of the Int. Conf. "Constructive Nonsmooth Analysis and Related Topics" dedicated to the memory of Professor V.F. Demyanov. Part I. – Saint-Petersburg: Institute of Electrical and Electronic Engineers, 2017. – P. 252–256.

References

- Panovko, Ya.G. Osnovy prikladnoy teorii uprugikh kolebaniy [Fundamentals of the applied theory of elastic vibrations] / Ya.G. Panovko. – Moscow: Mashinostroyeniye, 1967.
- Sukharev, A.G. Global'nyy ekstremum i metody yego otyskaniya [Global extremum and methods for finding it] // A.G. Sukharev. – Mathematical methods and operations research. – Moscow: Publishing House of Moscow State University, 1983. – P. 4–37.
- Alfutov, N.A. Vliyaniye odnostoronnikh svyazey na ustoychivost' tsilindricheskikh obolochek pri osevom szhatii [Influence of unilateral bonds on the stability of cylindrical shells under axial compression] // N.A. Alfutov, A.N. Eremichev. – Strength calculations. – Moscow: Engineering, 1989. – P. 179–180.
- Feodosiev, V.I. Izbrannyye zadachi i voprosy po soprotivleniyu materialov [Selected problems and questions on the strength of materials] / V.I.Feodosiev. – Moscow: Nauka, 1967. – 376 p.
- Andryukova, V.Y. Nonsmooth problem of stability for elastic rings / V.Y. Andryukova, V.N. Tarasov // Abstracts of the Int. Conf. "Constructive Nonsmooth Analysis and Related Topics" dedicated to the memory of Professor V.F. Demyanov. Part I. – Saint-Petersburg: Institute of Electrical and Electronic Engineers, 2017. – P. 213–218.
- Tarasov, V.N. Nonsmooth problems in the mechanics of elastic systems / V.N. Tarasov // Abstracts of the Int. Conf. "Constructive Nonsmooth Analysis and Related Topics" dedicated to the memory of Professor V.F. Demyanov. Part I. – Saint-Petersburg: Institute of Electrical and Electronic Engineers, 2017. – P. 252–256.

Известия Коми научного центра Уральского отделения Российской академии наук № 4 (62), 2023 Серия «Физико-математические науки» www.izvestia.komisc.ru

Для цитирования:

Андрюкова, В.Ю. О влиянии односторонних связей на устойчивость и колебания упругих колец / В.Ю. Андрюкова // Известия Коми научного центра Уральского отделения Российской академии наук. Серия «Физико-математические науки». – 2023. – № 4 (62). – С. 23–29.

For citation:

Andryukova, V.Yu. O vliyanii odnostoronnih svyazej na ustojchivost' i kolebaniya uprugih kolec [On the influence of unilateral bonds on the stability and oscillations of elastic rings] / V.Yu. Andryukova // Proceedings of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences. Series "Physical and Mathematical Sciences". – 2023. – № 4 (62). – P. 23–29.

Дата поступления рукописи: 23.06.2023 Received: 23.06.2023