Цветные и благородные металлы в погребении № 115 Кокпомъягского могильника вымской культуры: археологический и археолого-минералогические аспекты

Э. А. Савельева*, В. И. Силаев**, В. Н. Филиппов**, А. Ф. Хазов**

* ИЯЛИ ФИЦ Коми НЦ УрО РАН, г. Сыктывкар ** Институт геологии им. акад. Н. П. Юшкина ФИЦ Коми НЦ УрО РАН, г. Сыктывкар eleonorasav@yandex.ru silaev@geo.komisc.ru

Аннотация

В статье обсуждаются результаты археологического и археоминералогического анализов изделий из цветных и благородных металлов погребения № 115 Кокпомъягского могильника вымской культуры Перми Вычегодской, датируемой XI-XIV вв. Она включает общую характеристику могильника, погребения № 115, описание изделий из бронзы и серебра, результаты экспериментальных исследований этих предметов с использованием комплекса современных минералого-геохимических методов. Полученные результаты свидетельствуют о владении местными бронзолитейщиками сложных технологий производства разнообразных олово-медных и олово-серебряных сплавов.

Ключевые слова:

археологическая минералогия, вымская культура, погребение № 115, украшения, бронза, серебро, сплавы, естественнонаучные методы

Введение

Одним из важных направлений развития гуманитарных наук, в частности археологии, являются междисциплинарные археоминералогические исследования с привлечением методов естественнонаучных («аристотелевских») наук. При изучении вымской культуры начало им было положено в 1970-е гг. [1, с. 109–119]. В настоящее время активизировались и успешно реализуются методы современных минералогических, физико-химических и изотопных методов при изучении не только продуктов бронзолитейного производства вычегодских пермян [2, с. 38–50], но и костных останков средневекового вычегодского населения [3, с. 296–325]. Полученные данные представляют научный

Non-ferrous and precious metals in grave No. 115 of the Kokpomyag burial ground of the Vym culture: archaeological and archaeomineralogical aspects

E. A. Savelyeva*, V. I. Silaev**, V. N. Filippov**, A. F. Khazov**

* Institute of Language, Literature and History,

Federal Research Centre Komi Science Centre, Ural Branch, RAS, Syktyvkar

** Institute of Geology named after academician N.P. Yushkin, Federal Research Centre Komi Science Centre, Ural Branch, RAS, Syktyvkar

eleonorasav@yandex.ru silaev@geo.komisc.ru

Abstract

The paper discusses the results of archeological and archeomineralogical analyses of items made of non-ferrous and precious metals from burial No. 115 of the Kokpomyag burial ground of the Vym culture of the Vychegda Perm, dating back to the XI-XIV centuries. It includes a general characteristics of the burial ground, burial No. 115, a description of bronze and silver items, and the results of experimental studies of these items using a complex of modern mineralogical and geochemical methods. The results obtained indicate that local bronze casters possessed sophisticated technologies for the production of a variety of tin-copper and tin-silver alloys.

Keywords:

archaeological mineralogy, Vym culture, burial No. 115, adornments, bronze, silver, alloys, natural scientific methods

интерес как источник информации об уровне социально-экономического развития предков коми-зырян, роли инокультурных включений в формировании вымской культуры перми вычегодской.

Археологический контекст

Объектом настоящего исследования являются изделия из цветных и благородных металлов в погребении № 115 Кокпомъягского могильника (рис. 1, а), датируемого XII-XIV вв. [4, с. 164]. Могильник находится на левом берегу р. Вымь возле с. Шошка Княжпогостского района Республики Коми, в 700 м к югу от дер. Кокпом, на боровой террасе

высотой 12 м. От реки его отделяют луг и болотистая низина со смешанным лесом (рис. 1, б). В 1919 г. могильник, известный местному населению как Чудьгу мыльк (в переводе с коми языка – «Холм с чудскими ямами»), был обследован А. С. Сидоровым, вскрывшим на нем три погребения [5, с. 42]. В 1961 г. Вымским археологическим отрядом Коми филиала АН СССР под руководством Э. А. Савельевой проводились разведочные исследования в долине р. Вымь, в ходе которых было вскрыто девять погребений на Кок помъягском могильнике. В 1980-1981 гг. раскопки могильника были завершены. В результате вскрыто 229 погребений, расположенных двумя секторами: северо-восточным (165 погребений) и юго-западным (64 погребения), разделенными интервалом около 100 м (рис. 1, в). Погребения расположены рядами, внутри которых выделены группы из трех-пяти погребений.

Для Кокпомъягского могильника, как и для других некрополей вымской культуры, характерна биобрядность – сосуществование обрядов трупосожжения и трупоположения. Абсолютное большинство погребений совершено в ямах, единичные – на древней дневной поверхности. При ингумации погребенные ориентированы головой на север, предметы погребального инвентаря расположены на дне могильной ямы. В погребениях с трупосожжением кальцинированные кости и предметы погребального инвентаря расположены беспорядочно в засыпи ямы. Одна из выразительных особенностей обряда погребения вымской культуры – трупосожжение в срубах.

Большинство погребений содержит вещевой инвентарь, включающий предметы охотничьего вооружения, реже – боевые наконечники стрел, орудия труда, предметы быта, украшения. Безынвентарные погребения малочисленны (10). Погребений, содержащих одно-три невыразительных предмета, – 60, что вместе с безынвентарными составляет 30 % от общего количества погребений. Наряду с ними выделены погребения, содержащие богатый инвентарь: серебряные изделия, престижные серебряные скано-зерненые украшения, бусы, многочисленные железные наконечники стрел, производственный инвентарь. В 32 погребениях найдены серебряные украшения, из них – 30 в северо-восточном секторе (18%), два – в юго-западном (3%). Одним из наиболее богатых захоронений, содержащих как бронзовые (14 предметов), так и серебряные престижные украшения (3 предмета), является погребение № 115.

Погребение № 115 расположено в северо-восточном секторе могильника, вне ряда, на расстоянии 4-10 м от соседних. Могильная яма – овальной формы с отвесными стенками, дно плоское, ровное, размером 193 × 95 × 45 см, ориентирована с ССЗ на ЮЮВ (рис. 2). Подо мхом залегает углистая прослойка, ниже – углисто-зольный слой, в центре и вдоль стенок которого сохранились крупные куски горелого дерева, предположительно остатки горелого сруба.

Рис. 2. Прогребение № 115: а - план; б - стратиграфический разрез. Легенда на а: 1, 4, 8 - бронзовые бубенчики; 2, 3 - стеклянные бусы, 11, 14 - сердоликовые бусы; 15 - серебряная бусина; 5, 6, 9, 10 - бронзовые спиралевидные пронизки; 7 - серебряная подвеска-иконка; 7а - фрагмент подвески-иконки; 12, 13 - бронзовые конусовидные пронизки; 16 - бронзовая цепочка; 17 - обломок железной руды; 18 - керамика; УОС - углефицированные остатки срубов; к - кальцинированные кости. Легенда на 6: 1 - мох; 2 - углистая прослойка; 3 - углисто-зольный слой; 4 - желтый песок; 5 - геологический субстрат.

Fig. 2. Burial № 115: a - plan; 6 - stratigraphic section.

Legend on a: 1, 4, 8 – bronze bells; 2, 3 – glass beads, 11, 14 – carnelian beads, 15 – a silver bead; 5, 6, 9, 10 – bronze spiral thread decorations; 7 – a silver icon pendant; 7a – fragment of an icon pendant; 12, 13 – bronze cone-shaped thread decorations; 16 – bronze chain; 17 – iron ore fragment; 18 – ceramics; UOS – carbonized remains of log houses; κ – calcified bones. Legend on 6: 1 – moss; 2 – carbonaceous layer; 3 – carbon-ash layer; 4 – yellow sand; 5 – geological substrate.

Рис. 1. Памятники вымской культуры: а – план археологических памятников вымской культуры, красным цветом показан Кокпомъягский могильник (1 – могильники; 2 – святилище; 3 – поселение); б – ситуационный план расположения Кокпомъягского могильника; в – план раскопов Кокпомъягского могильника, красным цветом отмечено погребение № 115 (1, 2 – соответственно сохранившиеся и разграбленные погребения).

Fig. 1. Sites of the Vym culture: a – plan of archaeological sites of the Vym culture, the Kokpomyag burial ground is shown in red (1 – burial grounds, 2 – sanctuary, 3 – settlement); 6 – situational plan of the location of the Kokpomyag burial ground; B – plan of the excavations of the Kokpomyag burial ground, burial No. 115 is marked in red (1, 2 – preserved and looted burials, respectively).

В углисто-зольном слое беспорядочно залегают кальцинированные кости и предметы погребального инвентаря: в разных частях могильной ямы – фрагменты лепного неорнаментированного чашевидного сосуда с плоским венчиком и уплощенным дном; у северо-западной стенки – обломок бронзового шаровидного бубенчика, две голубые стеклянные кольцевидные бусины; у противоположной – обломок бронзового бубенчика с высокой цилиндрической шейкой, украшенной гладкими поясками, и грушевидным сплющенным туловом; в центральной части – бронзовые спиралевидные пронизки, бронзовый грушевидный бубенчик с гладкой полоской меди над широкой прорезью; в юго-восточной – бронзовые конусовидные пронизки, украшенные гладкими и с насечками поясками, серебряная скано-зерненая бусина из двух полусфер, соединенных между собой и зафиксированных двумя оборотами скани, обломок аналогичной бусины, две бипирамидальные сердоликовые бусины, цепочка из семи бронзовых двойных круглых колец (рис. 3). К уникальным находкам относится обломок прямоугольной серебряной подвески, по контуру которой проходит литой жгутик, на лицевой стороне – расплавленный фрагмент нечитаемого изображения, на обратной – припаянная олово-серебряная пластинка. Возможно, подвеска является иконкой и относится к числу редких предметов христианского культа на памятниках вымской культуры. В настоящее время - это единственная среди древностей перми вычегодской. Аналогичные по форме подвески-иконки были найдены при раскопках древнего Новгорода, однако они по составу – бронзовые, тогда как кокпомъягская – серебряная.

Вещи погребального инвентаря имеют достаточно широкий хронологический диапазон. Голубые кольцевидные стеклянные бусы датируются второй половиной XII-XIII вв. [6, с. 197; 7, рис. 237], бипирамидальные сердоликовые на древнерусских памятниках – XI-XII вв. [8, с. 153]. Серебряные бусины из двух полусфер, украшенные зернью и сканью, близки по технологии булгарским. По мнению К. А. Руденко [9, с. 349], их характерными особенностями являются шаро- или желудевидная форма, соединение двух половинок пайкой с помощью двух полых биоконусов, соединенных основаниями, а также шов, прикрытый сканой проволочкой. Такие бусины относятся к домонгольскому периоду в истории Волжской Болгарии и могут быть датированы периодом до середины XIII в., хотя на памятниках вымской культуры они могли сохраняться и дольше. Бронзовые бубенчики и пронизки на вымских могильниках встречаются с конца XI до XIV в., бесщитковые бронзовые цепочки - с конца XII в. [4, рис. 37]. Бронзовые подвески-иконки в древнем Новгороде бытовали с XII до XV в. [10, c. 65].

Таким образом, хронологические рамки погребения № 115 на основе представленных аналогий могут быть определены в пределах конца XII-первой половины XIII в.

Рис. 3. Погребальный инвентарь в погребении № 115 Кокпомъягского могильника: 1 – бронзовые конусовидные пронизки; 2 – бусина стеклянная; 3 – бронзовые грушевидные бубенчики; 4 – бусина серебряная со сканью и зернью; 5 – бронзовая цепочка; 6 – бипирамидальная сердоликовая бусина; 7 – серебряная прямоугольная подвеска-иконка.

Fig. 3. Grave goods in burial No. 115 of the Kokpomyag burial ground: 1 – bronze cone-shaped thread decorations; 2 – a glass bead; 3 – bronze pear-shaped bells; 4 – a silver bead with filigree and grain; 5 – bronze chain; 6 – a bipyramidal carnelian bead; 7 – a silver rectangular icon pendant.

Материалы и методы

В качестве непосредственных объектов исследований выступили 13 образцов: конусовидные пронизки (5); грушевидные бубенчики (3); обломок шаровидного бубенчика (1); спиралевидная пронизка (1); цепочка (1); серебряная бусина, украшенная сканью и зернью (1); прямоугольная подвеска-иконка (1). В ходе исследований применяли аналитическую сканирующую электронную микроскопию (JSM-6400 Jeol; TESCAN VEGA3 LMN) и рентгеновскую дифрактометрию (DX2700BH, Китай).

Результаты и их обсуждение

Конусовидные пронизки. Бронзовые украшения размером (17–20) × (5–12) мм (рис. 4) с примесью Pb, Ni, Fe, Sb, S, Cl (рис. 5). По содержанию олова бронзы в составе исследованных пронизок можно подразделить на три разновидности (табл. 1): 1) низкооловянистую с содержанием олова до 10 мас. % – Cu_{0.87-0.96}Sn_{0.02-0.05}Ni_{0-0.01}Pb_{0-0.02}Sb_{0-0.04} S_{0-0.02}; 2)

Рис. 4. Внешний вид бронзовых конусовидных пронизок. Fig. 4. Appearance of bronze cone-shaped thread decorations.

Рис. 5. ЭД-спектры конусовидных пронизок: а – бронза низкооловянистая; б – бронза высокооловянистая; в – медно-сурьмяные микровключения в бронзе. Fig. 5. ED spectra of cone-shaped thread decorations: a – low-tin bronze; б – high-tin bronze; в – copper-antimony microinclusions in bronze.

умереннооловянистую с содержанием до 20 мас. % – $Cu_{0.76-0.93}Sn_{0.07-0.09}Pb_{0-0.04}Ni_{0-0.02}Sb_{0-0.15}Cl_{0-0.15}$; 3) высокооловянистую с содержанием олова более 20 мас. % – $Cu_{0.54-0.76}Sn_{0.15-0.36}Pb_{0-0.07}Ni_{0-0.03}Fe_{0-0.01}Sb_{0-0.24}S_{0-0.01}Cl_{0-0.05}$. Изредка в бронзовой массе выявляют микроучастки сернисто-медного состава – $Cu_{0.74-0.92}S_{0.08-0.26}$. Расчеты показали, что примеси в составе бронз по-разному коррелируют с основными компонентами: сера прямо коррелирует с медью, а свинец, железо и сурьма – с оловом. Частота встречаемости металлов в составе пронизок, %: медь – 5,3; бронза низкооловянистая – 31,6; бронза умереннооловянистая – 7,9; бронза высокооловянистая , в исследованных пронизках преобладает высокооловяни-стая разновидность бронзы.

На поверхности пронизок выявлены несплошные микропленки сложного состава, но с преобладанием окисленных компонентов первичных металлических сплавов – CuO, SnO₂ (табл. 2). В качестве существенных примесей к этим компонентам выступают заимствования из окружающей среды (в последовательности снижения содержаний) – SiO₂, Al₂O₃, PbO, Sb₂O₃, P₂O₅, SO₃, Fe₂O₃, MnO, As₂O₅, NiO. Средние отношения молекулярных количеств основных компонентов в этих корках: CuO : SnO₂ : SiO₂ : Al₂O₃ : Sb₂O₃ : PbO = 27 : 18 : 37 : 10 : 2.5 : 1. То есть в рассматриваемом случае мы имеем дело с микрокорками преимущественно глиноземисто-оксимедно-оксиоловянно-кремнеземистого состава. Под СЭМ в исследованных пронизках выявляется множество включений размером от 5 × 2 до 2500 × 1500 мкм, варьирующих по составу от медно-свинцовых – $Pb_{0.75-0.78}$ $Cu_{0.22-0.24}Sn_{0.201}$ до висмут-олово-свинцовых – $Pb_{0.7}Sn_{0.28}Bi_{0.02}$, медно-сернисто-свинцовых – $Pb_{0.51-0.55}Cu_{0.03-0.06}S_{0.4-0.42}$ (в стехиометрии Me_3S_4) и медно-сурьмяных – $Sb_{0.88}Cu_{0.11}S_{0.01}$ (рис. 6; табл. 3).

Обнаружение в исследованных пронизках широко варьирующихся по составу бронз делает необходимым определения их положения в рамках современной номенклатуры аналогичных сплавов. На соответствующей двухкомпонентной фазовой диаграмме (рис. 7) выявленные в пронизках медь и медно-оловянные сплавы следующим образом соответствуют аллотропным формам в системе Cu–Zn: 1) медь с примесью Sn и Sb – ά-фаза во всем интервале температур 100–1000 °С; 2) бронза низкооловянистая – (ά+έ)-фаза до температуры 300 °C и ά-фаза в интервале 300–800 °C; 3) бронза умереннооловянистая – (ά+έ)-фаза до температуры 380 °C, смесь фаз ά и (ά+έ) в диапазоне 380-528 °С и смесь фаз ά и (ά+β) в диапазоне 586-800 °C; 4) бронза высокооловянистая – смесь фаз (ά+έ) и є́ в диапазоне 100–300 °С, смесь фаз δ, (δ+є́),

έ и (γ+έ) в диапазоне 350–640 °С.

Грушевидные бубенчики. Бронзовые украшения размером (20–28) × (11–17) мм (рис. 8) с примесью Zn, Pb, Fe, Sb, S, Cl (рис. 9). По содержанию олова бронзы подразделяются на две разновидности (табл. 4): резко преобладающую (частота встречаемости – 95 %) низкооловянистую – $Cu_{0.91-0.96}Sn_{0.02-0.03}Ni_{0-0.01}Zn_{0-0.05}Pb_{0-0.01}$ Fe_{0-0.01}Sb_{0-0.02} и встречающуюся спорадически (5 %) высоко-оловянистую – $Cu_{0.64}Sn_{0.26}Pb_{0.07}S_{0.02}Cl_{0.01}$. На поверхности бубенчиков выявлены несплошные микропленки глиноземисто-кремнеземисто-оксиоловянно-оксимедного состава (табл. 5). Средние отношения молекулярных количеств основных компонентов в них: CuO : SnO_2 : SiO_2 : Al_2O_3 : PbO : Sb_2O_3 = 30 : 8 : 3 : 2 : 1 : 1.

Под СЭМ в бронзе выявляется множество включений, весьма широко варьирующихся по размеру от 5 \times 2 до 1000 \times 500 мкм (рис. 10, 11). По составу включения подразделяются на медно-свинцовые – $Pb_{0.71-0.91}Cu_{0.09-0.22}$, серебряно-медно-свинцовые – $Pb_{0.68-0.88}Cu_{0.09-0.12}Ag_{0.03-0.06}S_{0-0.14}$, олово-медно-свинцовые – $Pb_{0.48-0.66}Cu_{0.33-0.46}Sn_{0.01-0.11}$, олово-висмут-медно-свинцовые – $Pb_{0.52}Cu_{0.45}Sn_{0.02}Bi_{0.11}$.

Шаровидный бубенчик с ушком. Фрагмент бронзового украшения размером 16 × 14 мм, украшенного на поверхности шариками диаметром около 500 мкм (рис. 12, а). Бронзы по составу (рис. 13) подразделяются на преобладающую умереннооловянистую (частота встречаемости 75 %) – Cu_{0.91-0.94}Sn_{0.06-0.08}Pb_{0-0.01}S_{0-0.01} и низкооловянистую (25 %) – Cu_{0.93}Sn_{0.03}Pb_{0.02} (табл. 6). Под СЭМ (рис. 12, б) в бронзовой основной массе бубенчика наблюдаются ред-

Химический состав (мас. %) и эмпирические формулы металлических фаз в конусовидных пронизках

Table 1

Chemical composition (wt. %) and empirical formulas of metal phases in cone-shaped thread decorations

№ п/п	Cu	Sn	Pb	Ni	Fe	S	Sb	Cl	Формулы
1	95.99	H. O.	H. O.	H. O.	H. O.	4.01	H. O.	H. O.	Cu _{0.92} S _{0.08}
2	84.65	0.91	«	«	«	14.44	«	«	Cu _{0.74} S _{0.26}
Среднее	90.32	0.45	H. O.	H. O.	H. O.	9.23	H. O.	H. O.	Cu S
СКО	8.02	0.64				7.37			0.74-0.92 ⁰ 0.08-0.26
3	87.5	5.97	H. O.	H. O.	H. O.	H. O.	6.53	H. O.	Cu _{0.93} Sn _{0.03} Sb _{0.04}
4	93.3	3.16	«	0.96	«	«	2.55	«	Cu _{0.%} Sn _{0.02} Ni _{0.01} Sb _{0.01}
5	90.56	4.35	«	0.69	«	«	4.4	«	Cu _{0.95} Sn _{0.02} Ni _{0.01} Sb _{0.02}
6	90.08	9.92	«	H. O.	«	«	H. O.	«	Cu _{0.94} Sn _{0.06}
7	91.27	8.73	«	«	«	«	«	«	Cu _{0.95} Sn _{0.05}
8	91.28	8.72	«	«	«	«	«	«	Cu _{0.95} Sn _{0.05}
9	90.78	9.22	«	«	«	«	«	«	Cu _{0.95} Sn _{0.05}
10	86.19	8.2	5.61	«	«	«	«	«	Cu _{0.93} Sn _{0.05} Pb _{0.02}
11	88.14	5.35	1.3	H. O.	«	5.21	H. O.	«	Cu _{0.87} Sn _{0.03} S _{0.1}
12	93.56	2.92	H. O.	0.76	«	H. O.	2.76	«	Cu _{0.95} Sn _{0.02} Ni _{0.01} Sb _{0.02}
13	92.39	3.43	«	0.87	«	«	3.31	«	Cu _{0.95} Sn _{0.02} Ni _{0.01} S _{0.0.02}
14	94.05	2.79	«	1.02	«	«	2.14	«	Cu _{0.96} Sn _{0.02} Ni _{0.01} Sb _{0.01}
Среднее	90.76	6.06	0.58	0.36	H. O.	0.43	1.81	H. O.	Cu _{0.87-0.96} Sn _{0.02-0.05} Ni _{0-0.01}
СКО	2.47	2.75	1.63	0.45		1.5	2.18		Pb _{0-0.02} S _{0-0.02} Sb _{0-0.04}
15	70.92	14.95	12.28	H. O.	H. O.	H. O.	H. O.	1.85	Cu _{0.82} Sn _{0.09} Pb _{0.04} Cl _{0.05}
16	87.45	12.55	H. O.	«	«	«	«	H. O.	Cu _{0.93} Sn _{0.07}
17	63.98	10.75	«	1.44	«	«	23.83	«	Cu _{0.76} Sn _{0.07} Ni _{0.02} Sb _{0.15}
Среднее	74.11	12.11	4.09	0.48	H. O.	H. O.	7.94	0.62	Cu _{0.76-0.93} Sn _{0.07-0.09} Pb _{0-0.04}
СКО	12.06	2.11	7.09	0.83			13.36	1.07	NI _{0-0.02} Sb _{0-0.15} Cl _{0-0.15}
18	53.5	28.11	16.77	H. O.	H. O.	H. O.	H. O.	1.62	Cu _{0.7} Sn _{0.2} Pb _{0.07} Cl _{0.03}
19	46.88	41.31	10.39	«	«	0.46	«	0.96	Cu _{0.63} Sn _{0.29} Pb _{0.04} S _{0.01} Cl _{0.05}
20	57.58	27.77	H. O.	1.15	«	«	13.51	H. O.	Cu _{0.71} Sn _{0.18} Ni _{0.02} Sb _{0.09}
21	58.08	26.22	«	1.37	«	«	14.33	«	Cu _{0.72} Sn _{0.17} Ni _{0.02} Sb _{0.09}
22	58.62	23.89	«	1.32	«	«	16.17	«	Cu _{0.72} Sn _{0.16} Ni _{0.02} Sb _{0.1}
23	58.24	23.65	«	1.47	«	«	16.64	«	Cu _{0.72} Sn _{0.16} Ni _{0.02} Sb _{0.1}
24	58.49	23.58	«	1.72	«	«	16.21	«	Cu _{0.72} Sn _{0.15} Ni _{0.02} Sb _{0.11}
25	57.88	25.44	0.92	1.22	«	«	14.59	«	Cu _{0.72} Sn _{0.17} Ni _{0.02} Sb _{0.09}
26	58.75	23.93	H. O.	1.36	«	«	15.96	«	Cu _{0.721} Sn _{0.16} Ni _{0.02} Sb _{0.09}
27	58.73	25.58	«	1.34	«	«	14.35	«	Cu _{0.72} Sn _{0.17} Ni _{0.02} Sb _{0.09}
28	58.99	41.01	«	H. O.	«	«	H. O.	«	Cu _{0.73} Sn _{0.27}
29	56.08	38.51	«	«	«	«	5.41	«	Cu _{0.71} Sn _{0.26} Sb _{0.03}
30	60.15	39.44	«	0.41	«	«	H. O.	«	Cu _{0.74} Sn _{0.25} Ni _{0.01}
31	56.1	41.98	«	0.48	«	«	1.44	«	Cu _{0.7} Sn _{0.28} Ni _{0.01} Sb _{0.01}
32	46.52	50.99	1.66	H. O.	0.83	«	H. O.	«	Cu _{0.62} Sn _{0.36} Pb _{0.01} Fe _{0.01}
33	62.83	36.33	0.84	«	H. O.	«	«	«	Cu _{0.76} Sn _{0.23} Pb _{0.01}
34	63.37	36.63	H. O.	«	«	«	«	«	Cu _{0.76} Sn _{0.24} Sb _{0.1}
35	60.75	39.25	«	«	«	«	«	«	Cu _{0.74} Sn _{0.26}
36	57.71	38.8	«	3.03	0.46	«	«	«	Cu _{0.72} Sn _{0.26} Pb _{0.01} S _{0.1}
37	46.5	35.53	1.1	H. O.	H. O.	«	16.87	«	CU _{0.55} SN _{0.22} NI _{0.01} Sb _{0.22}
38	39.34	26.05	1.92	«	«	«	32.69	«	Cu _{0.54} Sn _{0.19} NI _{0.03} Sb _{0.24}
Среднее	55.96	33.05	1.6	0.71	0.06	0.02	8.48	0.12	Lu _{0.54-0.76} SN _{0.15-0.36} PD _{0-0.07} Ni Fe S Sh
СКО	6.1	8.1	4.5	0.84	0.2	0.1	9.32	0.4	CL 0.01 CL 0.01 CL 0.01

вянная (табл. 7). Средние отношения молекулярных количеств основных компонентов в ней составляют: SiO₂ : CuO : SO₃ : Al₂O₃ = 5 : 4 : 1.2 : 1. То есть эта корка по преимущественному составу является глиноземисто-сульфатно-оксимедно-кремнеземистой.

Спиралевидная пронизка. Фрагмент бронзового украшения размером 91 × 36 мм (рис. 14, 15). Бронзы – относительно мало примесные (Pb, Sb), по составу подразделяются на преобладающую высокооловянистую (частота встречаемости 90 %) – Си_{0.62-0.84}Sn_{0.14-0.36}Pb_{0-0.03}Sb_{0-0.02}, и умереннооловянистую (10 %) – Си_{0.93}Sn_{0.07} (табл. 8). Микровключения в бронзе и микрокорки на поверхности не обнаружены.

Цепочка. Бронзовое украшение, состоящее из колец диаметром 8 мм с весьма сложным микростроением, обусловленным системой шаровых и спиралевидных элементов (рис. 16). Бронзы в составе колец цепочки (рис. 17; табл. 9) - Zn-содержащие, подразделяются на преобладающую низкооловянистую (встречаемость 42 %) – Cu_{0.9-0.94}Sn_{0.04}Zn_{0.01-0.02}(Ni,S)_{0-0.01}, умереннооловянистую (29 %) -Си₀₈₉₋₀₉Sn₀₀₆Zn₀₀₂Pb₀₀₂₋₀₀₃, и высоко-оловянистую (29 %) – Си₀₅₈₋₀₇₈Sn_{0.16-} _{0.35}Zn_{0.01-0.02}Pb_{0-0.02}Fe_{0-0.02}S_{0.02-0.04}Cl_{0-0.01}. В бронзовой массе обнаружены редкие свинцово-медные микровключения размером от 2 × 1 до 20 × 5 мкм – Си_{0.49-0.61}Pb_{0.33-0.47}Sn_{0-0.02}Zn₀₋ _{0.01}Ni_{0-0.01}S_{0-0.02}. На поверхности колец зарегистрирована микрокорка окисления (мас. %): SiO₂ = 21.28; TiO₂ = 0.62; SnO₂ = 0.88; Al₂O₃ = 17.6; Fe₂O₃ = 2.51; CuO = 47.35; PbO = 1.48; CaO = 0.72; Р₂0₅ = 5.59; SO₃ = 1.97. Отношение молекулярных количеств основных компонентов в ней: CuO : SiO, : Al,O, = 3.5:2:1. То есть в рассматриваемом случае поверхностная микрокорка имеет глиноземисто-кремнеземисто-оксимедный состав.

Серебряная бусина. Благородно-метальное украшение, состоящее из соединенных пояском двух полусфер со сканью и зернью размером 20 × 15 мм (рис. 18). Основная масса в бусине сложена весьма высо-

Примечание. 1–2 - медь; 3–14 - бронза низкооловянистая; 15–17 - бронза умереннооловянистая; 18–38 - бронза высокооловянистая. Здесь и далее: "«"; н.о.; не обн. – не обнаружено.

Note. 1–2 - copper; 3–14 - low-tin bronze; 15–17 - moderate-tin bronze; 18–38 - high-tin bronze. Hereinafter: "«"; н.о.; не обн. - not determined.

кие олово-медно-свинцовые включения размером до 50 мкм – Рb_{0.69-0.73}Си_{0.21-0.22}Sn_{0.02-0.04}S_{0.04-0.05} (табл. 6). Корка окисления на поверхности бубенчика – несплошная, безоло-

копробным (916–1000 ‰) серебром (рис. 19, табл. 10) состава Ag_{0.81-1}Cu_{0-0.04}S_{0-0.02}Cl_{0-0.12}. На некоторых участках наблюдаются локальные примазки с типичным для припоя составом

Химический состав микрокорок окисления на поверхности конусовидных пронизок, мас. %

Table 2

Chemical composition of oxidation microcrusts on the surface of cone-shaped thread decorations, wt. %

	r												
№ п/п	CuO	PbO	Sn0 ₂	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	NiO	MgO	K,0	P ₂ O ₅	SO ₃	As_2O_3	Sb ₂ O ₃
1	79.9	Н. О.	16.55	0.52	2.68	H. O.	H. O.	H. O.	H. O.	1.63	H. O.	1.29	6.43
2	80.58	«	H. O.	1.82	4.46	«	«	«	«	6.24	3.5	1.34	H. O.
3	41.03	«	«	4.20	35.97	4.04	«	«	«	14.75	H. O.	H. O.	«
4	7.06	2.17	«	79.01	4.88	H. O.	«	«	0.36	2.36	0.81	«	«
5	4.05	3.33	«	61.1	20.56	0.47	«	«	10.49	H. O.	H. O.	«	«
6	27.53	2.82	56.9	1.38	H. O.	H. O.	«	1.46	H. O.	«	«	«	9.91
7	28.25	1.87	56.91	1.81	«	«	«	1.46	«	«	«	«	9.7
8	29.24	2.47	52.45	2.0	«	«	«	1.71	«	«	«	«	12.13
9	72.39	1.26	5.25	1.18	«	0.52	1.86	3.88	«	5.97	1.06	«	6.63
10	80.06	Н. О.	1.81	0.75	«	0.63	H. O.	H. O.	«	1.78	10.71	«	4.26
Среднее	45.01	1.55	18.99	15.38	6.86	0.57	0.19	0.85	1.21	3.27	3.27	0.26	4.91
СКО	30.0	1.29	25.66	29.14	12.01	1.25	0.59	1.29	3.48	4.67	4.67	0.55	4.74

Рис. 6. Внутреннее строение конусовидных пронизок: 1 – бронзы; 2 – медно-сернисто-свинцовые включения. СЭМ-изображения в режимах вторичных (а, в, д, ж) и упруго-отраженных (б, г, е, з) электронов.

Fig. 6. Internal structure of cone-shaped thread decorations: 1 – bronze; 2 – copper-sulfur-lead inclusions. SEM images in the modes of secondary (a, B, π , π) and elastically reflected (6, r, e, 3) electrons.

Таблица 3 Химический состав (мас. %) и эмпирические формулы микровключений в бронзе конусовидных пронизок Table 3

Chemical composition (wt. %) and empirical formulas of microinclusions in bronze of cone-shaped thread decorations

№ п/п	Pb	Cu	Sn	Bi	S	Sb	Формулы
1	92.11	7.89	«	«	«	«	Pb _{0.78} Cu _{0.22}
2	90.59	8.77	0.64	H. O.	«	«	Pb _{0.75} Cu _{0.24} Sn _{0.01}
3	87.1	10.93	«	1.97	H. O.	«	Pb _{0.7} Sn _{0.28} Bi _{0.02}
4	85.2	4.06	H. O.	H. O.	10.74	H. O.	Pb _{0.51} Cu _{0.08} S _{0.41}
5	87.0	2.76	«	«	10.24	«	Pb 0.54Cu0.06S0.4
6	88.3	1.49	H. O.	«	10.21	«	Pb _{0.55} Cu _{0.03} S _{0.42}
7	H. O.	6.0	«	0.46	«	93.34	Sb ₀ Cu ₀ S ₀₀

Рис. 8. Внешний вид бронзовых грушевидных бубенчиков. Fig. 8. Appearance of bronze pear-shaped bells.

Ад_{0.28-0.48}Sn_{0.16-0.51}Cu_{0.02-0.06}S_{0.09-0.13}Cl_{0.04-0.2}. Последнее отражает довольно сложную технологию изготовления предмета. На поверхности бусины развивается микрокорка гидрокси-сульфат-хлоридных продуктов вторичных изменений – (Ад_{0.99-1}Fe_{0-0.01})[SO₄]_{0.13-} 0.29</sub>Cl_{0.034-0.61} (OH)_{0.05-0.34}.

Прямоугольная серебряная подвеска-иконка. Состоит из двух фрагментарно сохранившихся спаянных пластин (лицевой и оборотной) размером 40–35 мм с литыми жгутиками по контуру диаметром 3.5–4 мм (рис. 20). На поверхности лицевой пластины

наблюдается фрагмент нечитаемого изображения. Под СЭМ эта пластина характеризуется сочетанием плотных блоков, сцементированных однородной металлической массой с

Рис. 7. Фазовая диаграмма системы сплавов Cu–Sn по [11]. Красными рамками показаны диапазоны варьирования в конусовидных пронизках составов меди (1) и разновидностей бронзы соответственно низкооловянистой (2), умереннооловянистой (3) и высокооловянистой (4).

Fig. 7. Phase diagram of the Cu–Sn alloy system according to [11]. The red frames show the ranges of variation of the compositions of copper (1) and varieties of bronze, respectively, low-tin (2), moderate-tin (3) and high-tin (4) in the cone-shaped thread decorations.

Рис. 9. ЭД-спектры грушевидных бубенчиков: а – бронза низкооловянистая, б – медно-свинцовые микровключения в бронзе.

Fig. 9. ED spectra of pear-shaped bells: a – low-tin bronze, $\boldsymbol{6}$ – copper-lead microinclusions in bronze.

более тонкозернистой структурой (рис. 21). По составу (рис. 22, табл. 11) она почти нацело серебряная (проба 970–1000 ‰) – $Ag_{0.97-1}Cu_{0-0.03}S_{0-0.01}$, на поверхности имеется микрокорка серебряно-хлораргиритового состава – $(Ag_{0.93-0.98}Cu_{0-0.02}Fe_{0-0.02}S_{0-0.07})$ + (0.08–0.83)AgCl. В составе жгутиков присутствуете незначительная примесь олова – $Ag_{0.76-0.97}Sn_{0.01-0.16}Cu_{0.02-0.08}Fe_{0-0.01}$. Пластина на обратной стороне иконки по составу существенно отличается от лицевой, характеризуясь промежуточным серебряно-оловянным составом – $Sn_{0.24-0.79}Ag_{0.09-0.54}Cu_{0-0.01}Fe_{0-0.02}$.

Заключение

С использованием современных минералого-геохимических методов исследованы бронзовые и серебряные украшения из погребения № 115 Кокпомъягского могильника. Установлено, что бронзы в украшениях широко варьируют по пропорции между медью и оловом. В настоящее

Таблица 4

Химический состав (мас. %) и эмпирические формулы фаз в грушевидных бубенчиках

№ п/п	Cu	Sn	Zn	Pb	Ag	Fe	Bi	Sb	S	Cl	Формулы
1	9023	5.81	3.96	H. O.	H. O.	H. O.	H. O.	H. O.	H. O.	H. O.	Cu _{0.93} Sn _{0.03} Zn _{0.04}
2	90.5	4.92	4.52	«	«	«	«	«	«	«	Cu _{0.93} Sn _{0.03} Zn _{0.04}
3	91.22	4.53	4.25	«	«	«	«	«	«	«	Cu _{0.93} Sn _{0.02} Zn _{0.05}
4	87.15	9.35	3.5	«	«	«	«	«	«	«	Cu _{0.91} Sn _{0.05} Zn _{0.04}
5	87.1	9.5	3.4	«	«	«	«	«	«	«	Cu _{0.91} Sn _{0.05} Zn _{0.04}
6	91.33	2.89	5.76	«	«	«	«	«	«	«	Cu _{0.93} Sn _{0.02} Zn _{0.05}
7	92.69	7.31	H. O.	«	«	«	«	«	«	«	Cu _{0.96} Sn _{0.04}
8	89.93	10.07	«	«	«	«	«	«	«	«	Cu _{0.94} Sn _{0.06}
9	90.86	9.14	«	«	«	«	«	«	«	«	Cu _{0.95} Sn _{0.05}
10	90.72	9.28	«	«	«	«	«	«	«	«	Cu _{0.95} Sn _{0.05}
11	91.86	8.14	«	«	«	«	«	«	«	«	Cu _{0.95} Sn _{0.05}
12	93.25	6.75	«	«	«	«	«	«	«	«	Cu _{0.96} Sn _{0.04}
13	93.76	5.08	«	H. O.	«	0.32	«	0.84	«	«	Cu _{0.96} Sn _{0.03} (Fe,Sb) _{0.01}
14	92.92	5.3	«	0.76	«	H. O.	«	1.02	«	«	Cu _{0.96} Sn _{0.03} (Fe,Sb) _{0.01}
15	92.81	5.76	«	H. O.	«	0.32	«	1.11	«	«	Cu _{0.96} Sn _{0.03} (Fe,Sb) _{0.01}
16	92.39	6.67	«	«	«	H. O.	«	0.94	«	«	Cu _{0.95} Sn _{0.04} Sb _{0.01}
17	91.01	7.11	«	«	«	0.43	«	1.45	«	«	Cu _{0.95} Sn _{0.04} (Fe,Sb) _{0.01}
18	88.69	6.46	«	3.68	«	H. O.	«	1.17	«	«	Cu _{0.94} Sn _{0.04} Sb _{0.01} Pb _{0.01}
19	93.23	5.71	«	H. O.	«	0.19	«	0.87	«	«	Cu _{0.%} Sn _{0.03} (Sb,Pb) _{0.01}
20	93.39	5.35	«	«	«	H. O.	«	1.26	«	«	Cu _{0.%} Sn _{0.03} Sb _{0.01}
21	91.31	6.18	«	1.28	«	«	«	1.23	«	«	Cu _{0.95} Sn _{0.03} Sb _{0.01} Pb _{0.01}
Среднее	91.25	6.73	1.21	0.25	H. O.	0.06	H. O.	0.47	H. O.	H. O.	Cu _{0.91-0.96} Sn _{0.02-0.03} Zn _{0-0.05}
СКО	1.9	1.91	2.01	0.86		0.13		0.57			Pb _{0-0.01} Fe _{0-0.01} Sb _{0-0.01}
22	47.02	36.14	H. O.	15.82	H. O.	H. O.	H. O.	H. O.	0.56	0.46	Cu _{0.64} Sn _{0.26} Pb _{0.07} S _{0.02} Cl _{0.01}
23	2.95	«	«	97.05	H. O.	«	«	«	H. O.	«	Pb _{0.91} Cu _{0.09}
24	5.03	«	«	94.97	«	«	«	«	«	«	Pb _{0.84} Cu _{0.16}
25	10.99	H. O.	«	89.01	«	«	«	«	«	«	Pb _{0.71} Cu _{0.29}
26	5.55	«	«	94.45	«	«	«	«	«	«	Pb _{0.84} Cu _{0.16}
27	2.92	«	«	95.2	1.88	«	«	«	«	«	Pb _{0.88} Cu _{0.09} Ag _{0.03}
28	4.89	H. O.	«	88.59	3.73	«	«	«	2.79	H. O.	Pb _{0.68} Cu _{0.12} Ag _{0.06} S _{0.14}
29	21.59	5.45	«	72.96	«	«	«	«	H. O.	H. O.	Pb _{0.48} Cu _{0.46} Sn _{0.06}
30	13.41	0.83	«	85.76	«	«	«	«	«	«	Pb _{0.66} Cu _{0.33} Sn _{0.11}
31	13.82	0.87	«	85.31	«	«	H. O.	«	«	«	Pb _{0.65} Cu _{0.34} Sn _{0.01}
32	20.16	1.21	«	76.73	«	«	1.9	«	«	«	Pb _{0.52} Cu _{0.45} Sn _{0.02} Bi _{0.11}

время существует множество номенклатур таких бронз, лучшей из которых представляется номенклатура Дж. Ридерера [11]. Нами на основе полученных данных и с учетом результатов ранее проведенных исследований продуктов бронзолитейного производства вычегодских пермян [2] все множество исследованных медно-оловянных сплавов подразделено на четыре типа: 1 – медь; 2 – бронзы низко- (с содержанием Sn до 10 мас. %), умеренно- (10-20 мас. %) и высокооловянистые (более 20 мас.); 3 - медно-оловянные сплавы с преобладанием олова; 4 - олово. В исследованных предметах в рамках указанной номенклатуры диагностированы медь и все три разновидности бронзы (табл. 12), получившие в предметах из погребения № 115 разное распространение. Грушевидные бубенчики и цепочка изготовлены из низкооловянистой бронзы, шаровидный бубенчик и спиралевидная пронизка умереннооловянистой бронзы, конусовидные пронизки - высоко-оловянистой бронзы.

В составе исследованных бронзовых изделий выявлена широкая ассоциация элементов примесей – Pb, Ni, Fe, Zn, S, Sb, Cl, содержания которых лежат в пределах, типичных

Примечание. 1–21 – низкооловянистая бронза; 22 – высокооловянистая бронза; 23–32 – микровключения в бронзе.

. Note. 1–21 – low-tin bronze; 22 – high-tin bronze, 23–32 – microinclusions in bronze.

28 Известия Коми научного центра Уральского отделения Российской академии наук № 1 (67), 2024 Серия «История и филология»

www.izvestia.komisc.ru

Химический состав микрокорки окисления на поверхности грушевидного бубенчика, мас. % Table 5

Chemical composition of the oxidation microcrust on the surface of the pear-shaped bell, wt. %

№ п/п	SiO ₂	Al ₂ 0 ₃	Fe ₂ O ₃	Cu0	Sn0 ₂	PbO	Sb ₂ O ₃	P205	SO ₃
1	3.83	не обн.	1.53	49.61	32.88	3.21	5.79	2.16	0.99
2	3.02	«	1.59	49.36	36.06	3.69	4.77	0.83	0.68
3	4.74	«	1.94	54.48	29.45	4.18	3.72	1.49	не обн.
4	2.12	14.68	1.64	51.35	6.87	7.98	не обн.	13.84	1.52
Среднее	3.43	3.67	1.68	51.2	26.31	4.77	3.57	4.58	0.8
СКО	1.12	7.34	0.18	2.36	13.24	2.18	2.53	0.2	0.63

Рис. 10. Внутреннее строение грушевидных бубенчиков, сложенных только низкооловянистой бронзой. СЭМ-изображения в режимах вторичных (а, в, д, ж) и упруго-отраженных (б, г, е, з) электронов: 1 – основная бронзовая масса; 2 – включения серебро-медно-свинцовых и олово-медно-свинцовых сплавов.

Fig. 10. The internal structure of pear-shaped bells, composed only of lowtin bronze. SEM images in the modes of secondary (a, B, μ , μ) and elastically reflected (6, r, e, 3) electrons: 1 – main bronze mass; 2 – inclusions of silvercopper-lead and tin-copper-lead alloys.

Рис. 11. Внутреннее строение грушевидных бубенчиков, сложенных разными бронзами. СЭМ-изображения в режимах вторичных (а, в, д) и упруго-отраженных (б, г, е) электронов: 1, 2 – соответственно низко- и высокооловянистые бронзы; 2 – включения олово-медно-свинцовых сплавов. Fig. 11. Internal structure of pear-shaped bells composed of different bronzes. SEM images in the modes of secondary (а, в, д) and elastically reflected (б, г, е) electrons: 1, 2 – low- and high-tin bronzes, respectively, 2 – inclusions of tin-copper-lead alloys.

Рис. 12. Фрагмент шаровидного бубенчика: а - внешний вид; б - внутреннее строение под СЭМ. СЭМ-изображения в режимах вторичных (слева) и упруго-отраженных (справа) электронов: 1 - умереннооловянистая бронза, слагающая основную массу бубенчика; 2 - бронзовые шарики, покрытые микрокорками окисления.

Fig. 12. A fragment of a spherical bell: a external view, 6 - internal structure under SEM. SEM images in the secondary (left) and elastically reflected (right) electron modes: 1 - moderate tin bronze, composing the bulk of the bell, 2 - bronze balls covered with micro-crusts of oxidation

Таблица 6

Химический состав (мас. %) и эмпирические формулы бронзы (1-4) и олово-медно-свинцовых включений (5, 6) в шаровидном бубенчике

Рис. 13. ЭД-спектр бронзового

шаровидного бубенчика. Fig. 13. ED spectrum of a bronze

spherical bell.

Т	at	ole	6
	uı		

Chemical composition (wt.%) and empirical formulas of bronze (1-4) and tin-copper-lead inclusions (5, 6) in the pear-shaped bell

№ п/п	Cu	Sn	Pb	S	Формулы
1	85.33	9.0	5.67	H. O.	Cu _{0.93} Sn _{0.05} Pb _{0.02}
2	89.16	10.84	не обн.	H. O.	Cu ₀₉₄ Sn ₀₀₆
3	85.85	10.28	3.43	0.44	Cu _{0.92} Sn _{0.06} Pb _{0.01} S _{0.01}
4	84.86	13.19	1.23	Н. о.	Cu _{0.91} Sn _{0.08} Pb _{0.01}
5	8.7	3.09	87.35	0.86	Pb _{0.69} Cu _{0.22} Sn _{0.04} S _{0.05}
6	7.92	1.23	90.01	0.84	Pb _{0.73} Cu _{0.21} Sn _{0.02} S _{0.04}

Таблица 7

Химический состав микрокорки на поверхности шаровидного бубенчика, мас. %

Table 7

Chemical composition of microcrust on the surface of the pear-shaped bell, wt. %

Компоненты	1	2	3	Среднее	СКО
SiO ₂	0,89	4,72	61,55	22.39	33.97
Al ₂ O ₃	3,84	13,55	5,13	7.51	5.27
Fe ₂ O ₃	0,84	1,97	0,74	1.18	0.68
CuO	52,76	10,61	9,84	24.4	24.56
ZnO	H. O.	H. O.	1,09	0.36	0.63
PbO	1,34	«	H. O.	0.45	0.77
CaO	H. O.	8,75	0,44	3.06	4.97
BaO	«	H. O.	1,13	0.38	0.65
P ₂ 0 ₅	3,18	2,37	1,81	2.45	0.69
SO ₃	2,87	15,58	2,95	7.13	7.32
Сумма	65,72	57,55	84,68	69.31	13.92

Рис. 14. Спиралевидная пронизка: а - внешний вид; б-д - внутреннее строение под СЭМ. СЭМ-изображения в режимах вторичных (б, г) и упруго-отраженных (в, д) электронов: 1, 2 - соответственно умеренно- и высокооловянистые бронзы.

Fig. 14. A spiral thread decoration: a - external view, $6-\mu$ - internal structure under SEM. SEM images in the modes of secondary (6, r) and elastically reflected (B, μ) electrons: 1, 2 - low- and high-tin bronzes, respectively.

Рис. 15. ЭД-спектр спиралевидной пронизки. Fig. 15. ED spectrum of a spiral thread decoration.

Таблица 8

Химический состав (мас. %) и эмпирические формулы умеренно- (1) и высокооловянистых (2-10) бронз в спиралевидной пронизке

Table 8

Chemical composition (wt.%) and empirical formulas of low- (1) and high-tin (2-10) bronzes in a spiral thread decoration

№ п/п	Cu	Sn	Pb	Sb	Формулы
1	88.31	11.69	не обн.	«	Cu _{0.93} Sn _{0.07}
2	69.96	24.45	5.59	H. O.	Cu _{0.82} Sn _{0.15} Pb _{0.03}
3	46.41	50.85	2.74	«	Cu _{0.62} Sn _{0.36} Pb _{0.02}
4	60.49	37.33	«	2.18	Cu _{0.74} Sn _{0.24} Sb _{0.02}
5	58.74	38.8	0.71	1.75	Cu _{0.73} Sn _{0.26} (Pb,Sb) _{0.01}
6	69.74	26.06	4.2	H. O.	Cu _{0.82} Sn _{0.16} Pb _{0.02}
7	69.5	25.67	4.83	«	Cu _{0.82} Sn _{0.16} Pb _{0.02}
8	72.01	23.33	4.66	«	Cu _{0.84} Sn _{0.14} Pb _{0.02}
9	72.31	24.83	2.86	«	Cu _{0.84} Sn _{0.15} Pb _{0.01}
10	59.06	34.58	6.36	«	Cu _{0.74} Sn _{0.23} Pb _{0.03}

Рис. 16. Бронзовая цепочка: а - внешний вид; б-ж микростроение под СЭМ. СЭМ-изображения в режимах вторичных (б, г, е) и упруго-отраженных (в, д, ж) электронов: 1 - бронза; 2 - свинцово-медные включения.

Fig. 16. A bronze chain: a appearance; $6-\varkappa$ - microstruc ture under SEM. SEM images in the modes of secondary (6, r, e) and elastically reflected (B, д, \varkappa) electrons: 1 - bronze, 2 - lead-copper inclusions.

Рис. 17. ЭД-спектры низко- (а) и высокооловянистой (б) бронз и свинцово-медленных включений (в).

Fig. 17. ED spectra of low-tin (a) and high-tin (6) bronzes and lead-slow inclusions (B).

именно для бронз эпохи средневековья. Ассортимент этих примесей указывает на то, что местные бронзолитейщики использовали не только производственный лом и привозные слитки цветных и благородных металлов, но и не исключено, что и природное минеральное сырье, вероятно, с территорий Северного, Среднего и Южного Урала. При этом обращает на себя внимание отсутствие в составе изученных предметов настоящих цинкистых бронз, характерных для прибалтийской металлургической провинции. Почти во всех случаях в бронзовых матрицах выявлены микровключения полиметальных сплавов на основе свинца или свинца-меди. Появление таких включений мы объясняем распадом первичных металлургических твердых растворов при охлаждении. На поверхности бронзовых предметов присутствуют микрокорки, варьирующиеся по составу от глиноземисто-кремнеземисто-оксимедных до глиноземисто-оксимедно-оксиоловянно-кремнеземистых. Образование таких корок можно связать с завершающим этапом плавок, когда в условиях остывания на поверхности образующихся бронзовых предметов мог отлагаться материал тиглей.

Сопоставление исследованных бронз с соответствующей фазовой диаграммой Cu-Sn показывает, что в рассма-

Химическй состав (мас. %) и эмпирические формулы цинксодержащих низко- (1-5), умеренно- (6, 7) и высокооловянистых (8, 9) бронз, олово-свинцово-медных микровключений (10, 11) в цепочке

Table 9 Chemical composition (wt.%) and empirical formulas of zinc-containing low- (1-5), moderate-(6, 7) and high-tin (8, 9) bronzes, tin-lead-copper microinclusions (10, 11) in the chain

№ п/п	Cu	Sn	Zn	Ni	Pb	Fe	S	Cl	Формулы
1	90.96	7. 11	1.5	0.43	H. O.	Н. О.	H. O.	H. O.	Cu _{0.94} Sn _{0.04} Zn _{0.01} Ni _{0.01}
2	90.63	7.3	1.55	0.52	«	«	«	«	Cu _{0.94} Sn _{0.04} Zn _{0.01} Ni _{0.01}
3	90.42	7.27	1.59	0.45	«	«	0.27	«	Cu _{0.93} Sn _{0.04} Zn _{0.02} (Ni,S) _{0.01}
4	89.67	7.73	1.93	0.67	«	«	H. O.	«	Cu _{0.93} Sn _{0.04} Zn _{0.02} Ni _{0.01}
5	91.08	7.48	1.44	H. O.	«	«	«	«	Cu _{0.94} Sn _{0.04} Zn _{0.02}
Среднее	90.55	7.38	1.6	0.41	n	n	0.05	n	Cu _{0.93-0.94} Sn _{0.04} Zn _{0.01-}
СКО	0.56	0.24	0.19	0.25	U	U	0.12	0	_{0.02} (Ni,S) _{0-0.01}
6	83.08	10.12	1.93	H. O.	4.87	H. O.	H. O.	H. O.	Cu _{0.9} Sn _{0.06} Zn _{0.02} Pb _{0.02}
7	85.1	10.07	2.01	2.82	H. O.	«	«	«	Cu _{0.89} Sn _{0.06} Zn _{0.02} Ni _{0.03}
Среднее	84.09	10.1	1.97	1.41	2.44	0	0	0	Cu Sn 7n Ph
СКО	1.43	0.04	0.06	1.99	3.44	U	U	9	0.02-0.03
8	43.88	50.07	0.87	H. O.	3.69	0.,38	0.66	0.45	Cu _{0.58} Sn _{0.35} Zn _{0.01} Pb _{0.02} Fe _{nnt} S _{0.02} Cl _{0.01}
9	69.0	27.15	2.81	«	H. O.	H. O.	1.,64	H. O.	Cu _{0.78} Sn _{0.16} Zn _{0.02} S _{0.04}
Среднее	56.44	38.61	1.84		1.85	0.19	1.15	0.23	Cu _{0.58-0.78} Sn _{0.16-0.35} Zn _{0.01-}
СКО	17.76	16.21	1.37	0	2.61	0.27	0.69	0.32	_{0.02} Pb _{0-0.02} Fe _{0-0.02} S _{0.02-}
10	23,6	1,38	H. O.	H. O.	74,48	H. O.	0,54	H. O.	Cu _{0.49} Pb _{0.47} Sn _{0.02} S _{0.02}
11	34,57	1,94	0,71	0,38	61,91	«	0,49	«	Cu _{0.61} Pb _{0.33} Sn _{0.02} Zn _{0.01} Ni _{0.01} S _{0.02}
Среднее	29.09	1.66	0.36	0.19	68.2	0	0.52	0	Cu _{0.49-0.61} Pb _{0.33-0.47} Sn _{0.02} Zn _{n-}
СКО	7.76	0.4	0.5	0.27	8.89	U	0.04	U	_{0.01} Ni _{0-0.01} S _{0.02}

Таблица 10

Химический состав (мас. %) и эмпирические формулы серебра (1–11), медно-олово-серебряного припоя (12–14) и микрокорок вторичного изменения на поверхности серебряной бусины (15–18) Table 10

Chemical composition (wt.%) and empirical formulas of silver (1–11), copper-tin-silver solder (12–14) and microcrusts of secondary alteration on the surface of the silver bead (15-18)

№ п/п	Ag	Cu	Sn	Fe	S	Cl	Формулы
1	97.23	1.82	не обн.	не обн.	не обн.	0.95	Ag _{0.94} Cu _{0.03} Cl _{0.03}
2	97.67	1.09	«	«	0.43	0.81	Ag _{0.94} Cu _{0.02} S _{0.01} Cl _{0.03}
3	91.65	0.59	«	2.71	0.32	4.73	Ag _{0.81} Cu _{0.01} Fe _{0.05} S _{0.01} Cl _{0.12}
4	99.68	не обн.	«	не обн.	0.32	не обн.	Ag _{0.99} S _{0.01}
5	98.55	1.45	«	«	не обн.	«	Ag _{0.98} Cu _{0.02}
6	98.54	1.46	«	«	«	«	Ag _{0.97} Cu _{0.03}
7	98.61	0.75	«	«	«	0.64	Ag _{0.97} Cu _{0.01} Cl _{0.02}
8	94.51	2.87	«	«	0.68	1.94	Ag _{0.88} Cu _{0.04} S _{0.02} Cl _{0.02}
9	97.72	1.77	«	«	не обн.	0.51	Ag _{0.96} Cu _{0.03} Cl _{0.01}
10	100	не обн.	«	«	«	не обн.	Ag
11	98.3	0.57	«	«	«	1.13	Ag _{0.96} Cu _{0.01} Cl _{0.03}
Среднее	97.5	1.12	1.12	0	0.25	0.97	Δα Γιι 5 ΓΙ
СКО	2.42	0.86	0.86	U	0.82	1.39	
12	61,86	1.31	22.0	2.99	3.48	8.36	Ag _{0.48} Sn _{0.16} Cu _{0.02} Fe _{0.05} S _{0.09} Cl _{0.2}
13	45.27	1.9	44.28	0.36	4.05	4.14	Ag _{0.39} Sn _{0.35} Cu _{0.03} Fe _{0.01} S _{0.12} Cl _{0.1}
14	27.97	3.9	61.82	0.5	4.19	1.62	$Ag_{0.25}Sn_{0.51}Cu_{0.06}Fe_{0.01}S_{0.13}Cl_{0.04}$
Среднее	45.03	2.37	42.7	1.28	3.91	4.71	Ag _{0.28-0.48} Sn _{0.16-0.51} Cu _{0.02-0.06} S _{0.09-0.13}
СКО	16.95	1.36	19.96	1.48	0.38	3.4	Cl _{0.04-0.2}
15	86.25	не обн.	не обн.	не обн.	4.11	9.64	Ag[SO ₄] _{0.16} Cl _{0.34} (OH) _{0.34}
16	81.63	«	«	0.78	3.37	14.22	$(Ag_{0.99}Fe_{0.01})[SO_4]_{0.14}Cl_{0.53}(OH)_{0.2}$
17	80.33	«	«	0.39	3.15	16.13	$(Ag_{0.99}Fe_{0.01})[SO_4]_{0.13}Cl_{0.61}(OH)_{0.14}$
18	82.24	«	«	0.43	7.06	10.27	(Ag _{0.99} Fe _{0.01})[SO ₄] _{0.29} Cl _{0.38} (OH) _{0.05}
Среднее	45.03	2.37	42.7	1.28	3.91	4.71	(Ag _{0.99-1} Fe _{0-0.01})[SO ₄] _{0.13-0.29} Cl _{0.34-0.61}
СКО	16.95	1.36	19.96	1.48	0.38	3.4	(OH) _{0.05-0.34}

Рис. 18. Серебряная бусина: а, б - внешний вид; в, г - микростроение под СЭМ. СЭМ-изображения в режимах вторичных (в) и упруго-отраженных (г) электронов.

Fig. 18. A silver bead: a, 6 - appearance; B, r - microstructure under SEM. SEM images in the modes of secondary (B) and elastically reflected (r) electrons.

Рис. 19. ЭД-спектры серебряной бусины (а) и использованного при ее изготовлении припоя (б). Fig. 19. ED spectra of a silver bead (a) and the solder used in its manufacture (b).

триваемый период предки коми-зырян уже владели литейными технологиями практически во всем диапазоне известных в настоящее время меднооловянных сплавов. Представленная в погребении серебряная бусина, судя по ее химическому составу и технологии изготовления, является привозной из Волжской Болгарии. Как отмечено выше, серебряная подвеска-иконка находит аналогии в древнем Новгороде, но отличается от новгородских по химическому составу и технологии изготовления. Припаянная с обратной стороны пластинка из олово-серебряного сплава позволяет высказать предположение, что местные ювелиры освоили опыт изготовления из сплава олова и серебра, используя привозное сырье. Косвенным подтверждением этого предположения является

Таблица 11 Химический состав (мас. %) и эмпирические формулы серебра в лицевой

Table 11

Формулы

Рис. 20. Внешний вид прямоугольной серебряной подвескииконки: а, б – соответственно лицевая и оборотная стороны. Fig. 20. Appearance of a rectangular silver icon pendant: a, б – front and back sides, respectively. № п/п

Ag

Рис. 21. Микростроение лицевой пластины на иконке: а, б серебряные блоки; в, г - промежутки между блоками (светлое - участки зачистки продуктов вторичного изменения). СЭМ-изображения в режимах вторичных (а, в) и упруго-отраженных электронов.

Fig. 21. Microstructure of the front plate on the icon: a, 6 - silver blocks; B, r - spaces between blocks (light - areas of stripping of secondary alteration products). SEM images in the modes of secondary (a, B) and elastically reflected electrons.

Рис.	22.	ЭД-спектры	лицевой	пластинь	ı (a)	И	жгу	тика	(б)	на
поде	веск	е-иконке.								

Fig. 22. ED spectra of the facial plate (a) and flagellum (6) on the icon pendant.

находка слитков серебра в виде шариков в погребении № 86 Кокпомъягского могильника.

Авторы заявляют об отсутствии конфликта интересов.

1	99.11	0.89	H. O.	Ag _{0.98} Cu _{0.02}					
2	100	H. O.	«	«	«	«	«	Ag	
3	99.31	0.69	«	«	«	«	«	Ag _{n 99} Cu _{n m}	
4	98.46	1.54	«	«	«	«	«	Ag _{0.97} Cu _{0.03}	
5	97.99	1.78	«	«	«	0.23	«	Ag _{n %} Cu _{n n} S _{n m}	
7	100	H. O.	«	«	«	«	«	Ag	
8	99.27	0.73	«	«	«	«	«	Ag _{no} Cu _{nn}	
9	99.02	0.98	«	«	«	«	«	Ag _{n 98} Cu _{nn1}	
Среднее	99.15	0.83	_	0	0	0.03	0	• • • •	
СКО	0.69	0.64	U			0.08		Ag _{0.97-1} Uu _{0-0.03} S _{0-0.01}	
10	77.55	4.6	17.85	H. O.	H. O.	H. O.	H. O.	Ag _{n 76} Sn _{n 16} Cu _{nns}	
11	83.94	2.52	13.54	«	«	«	«	Ag _{0.83} Sn _{0.12} Cu _{0.05}	
12	97.08	1.39	1.53	«	«	«	«	Ag _{0.07} Sn _{0.07} Cu _{0.02}	
13	92.08	1.91	5.66	«	0.35	«	«	Ag _{na} Sn _{na} Cu _{na} Fe _{na}	
14	77.55	4.6	17.85	«	H. O.	H. O.	«	Ag _{0.74} Sn _{0.14} Cu _{0.08}	
15	83.94	2.52	13.54	«	«	«	«	AgSnCu	
16	97.08	1.39	1.53	«	«	«	«	Ag.,,,Sn.,,Cu.,,,	
17	92.08	1.91	5.66	«	0.35	«	«	Ag. Sn. Cu. Fe.	
Среднее	87.66	2.61	9.65		0.09			An Sn Cu	
СКО	8.01	1.3	6.85	0	0.16	0	0	Fe _{n-nn}	
18	8.6	1.34	85.79	н. о.	2.12	1.14	1.01	Sn _{0.79} Ag _{0.09} Cu _{0.02} Fe _{0.04} S _{0.}	
19	17.56	0.52	79.51	«	«	2.35	Н. О.	Sn, 72Ag, 1002	
20	26.27	17.62	51.41	«	0.77	3.93	«	Sn _{n 4} Ag _{n 22} Cu _{n 25} Fe _{n n1} S _{n 12}	
21	27.54	22.57	43.35	0.77	0.99	3.98	0.8	Sn _{0.32} Ag ₀ ₂₂ Cu _{0.31} Fe _{0.02} Ni _{0.01} S _{0.11} Cl _{0.01}	
22	58.08	13.0	28.54	H. O.	0.38	H. O.	H. O.	Sn _{0.24} Ag _{0.54} Cu _{0.21} Fe _{0.01}	
23	8.6	1.34	85.79	«	2.12	1.14	1.01	Sn _{0.79} Ag _{0.09} Cu _{0.02} Fe _{0.04} S _{0.09} Cu _{0.02} Fe	
24	17.56	0.52	79.51	«	H. O.	2.35	H. O.	Sn _{n 73} Ag _{n 18} Cu _{nn1} S _{n n8}	
25	26.27	17.62	51.41	«	0.77	3.93	«	Sn, Ag, 22Cu, 25Fe, 35, 12	
26	27.54	22.57	43.35	0.77	0.99	3.98	0.8	Sn _{0.32} Ag ₀ "2Cu _{0.31} Fe _{0.02} Ni _{0.01} S _{0.1} Cl _{0.01}	
27	58.08	13.0	28.54	H. O.	0.38	н. о.	H. O.	Sn _{n 2/} Ag _{n 5/} Cu _{n 21} Fe _{n n1}	
Среднее	27.61	11.01	57.72	0.09	0.85	2.28	0.36	Sn _{0.26-0.79} Ag _{0.09-0.56} Cu ₀₋	
СКО	17.59	9.25	22.9	0.26	0.76	1.64	0.77	0.31 $Fe_{0-0.04}$ $Ni_{0-0.01}$ $S_{0-0.02}$	
28	97,68	1,01	H. O.	H. O.	H. O.	н. о.	1,31	0.92(Ag _{0.98} Cu _{0.02}) + 0.08AgCl	
29	88,71	H. O.	«	«	0,55	0,45	10,29	0.48(Ag _{0.%} Fe _{0.02} S _{0.02}) + 0.52AgCl	
30	80,51	«	«	«	н. о.	0,45	19,04	0.17(Ag _{0.93} S _{0.07}) + 0.83AgCl	
Среднее	88.79	0.34			0.18	0.3	10.21	(0.17-0.92)(Ag _{n 93-0 98} Cu _n	
СКО	8.59	0.58	0	0	0.32	0.26	8.86	Fe ^{-0,35-0,75} S _{0-0,07}) + (0.08-0.83)AgCl	

пластине (1–9), олово-серебряного сплава в жгутиках (10–17), серебро-оловянного сплава в задней пластине (18–27) и продуктов вторичного изменения серебра (28–30) в подвеске-иконке

Chemical composition (wt.%) and empirical formulas of silver in the front plate (1–9), tin-silver alloy in flagella (10–17), silver-tin alloy in the back plate (18–27) and products of secondary alteration of silver (28–30) in the icon pendant

Cu Sn Ni Fe S Cl

Литература

 Савельева, Э. А. Пермь Вычегодская / Э. А. Савельева. – Москва: Наука, 1971. – 223 с.

2. Астахова, И. С. Бронзолитейное производство вычегодских пермян (по материалам нижневычегодского

Обобщение полученных данных по составу бронзовых изделий в погребении № 115

Table 12

Generalization of the data obtained on the composition of bronze items in burial No. 115

	Осн	новная масса (ч	астота встречае	емости, %)			Микрокорки на поверхности
Изделия	Медь		Бронза		Элементы-	Микровключения	
		низкооловя- нистая	умереннооло- вянистая	высокооло- вянистая	примеси		
Конусовидные пронизки	5.3	31.6	7.9	55.2	Pb, Ni, Fe, S, Sb, Cl	$\begin{array}{l} Pb_{0.75-0.78}Cu_{0.22-0.24}Sn_{0-0.01}\\ Pb_{0.7}Sn_{0.28}Bi_{0.02}\\ Pb_{0.51}Cu_{0.08}S_{0.41}\\ Pb_{0.54-0.55}Cu_{0.03-0.04}S_{0.4-0.42}\\ Sb_{0.88}Cu_{0.11}S_{0.01}\\ \end{array}$	Глиноземисто-оксимед- но-оксиоловянно-крем- неземистая
Грушевидные бубенчики	не обн.	95	не обн.	5	Zn, Pb, Fe, Sb, S, Cl	$\begin{array}{l} Pb_{0.71-0.97}Cu_{0.09-0.29}\\ Pb_{0.68-0.88}Cu_{0.09-0.12}\ Ag_{0.03-0.06}\ S_{0-0.14}\\ Pb_{0.48-0.66}Cu_{0.33-0.46}\\ Sn_{0.01-0.11}\\ Pb_{0.52}Cu_{0.45}Sn_{0.07}Bi_{0.11}\\ \end{array}$	Глиноземисто-кремнезе- мисто-оксиоловянно-ок- симедная
Шаровидный бубенчик	«	25	75	не обн.	Pb, S	$\frac{Pb_{_{0.69-0.73}}Cu_{_{0.21-0.22}}}{Sn_{_{0.02-0.04}}S_{_{0.04-0.05}}}$	Глиноземисто-сульфат- но-оксимедно-кремне- земистая
Спиралевидная пронизка	«	10	90	«	Pb, Sb	не обн.	не обн.
Цепочка	«	42	29	29	Zn, Ni, Pb, Fe, S, Cl	$\begin{bmatrix} Cu_{_{0.49-0.61}}Pb_{_{0.33-0.47}}Sn_{_{0-0.02}}\\ Zn_{_{0-0.01}}Ni_{_{0-0.01}}S_{_{0-0.02}} \end{bmatrix}$	Глиноземисто-кремнезе- мисто-оксимедная

Чежтыягского могильника) / И. С. Астахова, Э. А. Савельева // Вестник геонаук. – 2022. – № 4. – С. 38–50.

- Силаев, В. И. Костные останки из могильников Перми Вычегодской (XI-XIV вв.): результаты мультидисциплинарных научных исследований и эколого-исторические реконструкции / В. И. Силаев, Э. А. Савельева, А. Ф. Хазов, С. Н. Шанина, И. В. Смолева [и др.] // Вестник Пермского университета. Геология. – 2022. – Т. 21, № 4. – С. 296–325.
- Савельева, Э. А. Вымские могильники XI-XIV вв. / Э. А. Савельева. – Ленинград: Изд-во ЛГУ, 1987. – 200 с.
- Сидоров, А. С. Памятники древности в пределах Коми края / А. С. Сидоров // Коми му. – 1925. – № 2 (912). – С. 40–50.
- Захаров, С. Д. Изделия из стекла и каменные бусы / С. Д. Захаров, Н. А. Кузина // Археология севернорусской деревни X-XIII вв. (материальная культура и хронология). Т. 2. – Москва : Наука, 2008. – С. 142–213.
- Захаров, С. Д. Мининский археологический комплекс: хронология и динамика развития / С. Д. Захаров, Н. А. Макаров // Археология севернорусской деревни X-XIII вв. (материальная культура и хронология). Т. 2. – Москва : Наука, 2009. – С. 290–316.
- Фехнер, М. В. К вопросу об экономических связях древнерусской деревни X-XIII вв. / М. В. Фехнер // Труды ГИМ. – 1959. – Вып. 33. – С. 149–224.
- 9. Руденко, К. А. Булгарское серебро / К. А. Руденко. Казань, 2015. 528 с.
- Седова, М. В. Ювелирные изделия Древнего Новгорода (X-XV вв.) / М. В. Седова. – Москва : Наука, 1981. – 193 с.
- Riederer J. Metallanalysen romischer Bronsen // Toreutik und figurliche Bronzen romischer Zeit, Akten der 6. Tagung uber antike Bronzen, Berlin 1980. – Berlin, 1984. – P. 220–225.

References

- Savelyeva, E. A. Perm' vychegodskaya [Vychegda Perm] / E. A. Savelyeva. – Moscow: Nauka. – 1971. – 223 p.
- Astakhova, I. S. Bronzoliteynoye proizvodstvo vychegodskikh permyan (po materialam nizhnevychegodskogo Chezhtyyagskogo mogil'nika) [Bronze foundry production of the Vychegda Permians (based on materials from the Low Vychegda Chezhtyyag burial ground)] / I. S. Astakhova, E. A. Savelyeva // Bull. of Geosciences. - 2022. - No. 4. - P. 38-50.
- Silaev, V. I. Kostnyye ostanki iz mogil'nikov permi vychegodskoy (XI-XIV vv.): rezul'taty mul'tidistsiplinarnykh nauchnykh issledovaniy i ekologo-istoricheskiye rekonstruktsii [Bone remains from the Vychegda Perm burial grounds (XI-XIV centuries): results of multidisciplinary scientific research and environmental and historical reconstructions] / V. I. Silaev, E. A. Savelyeva, A. F. Khazov, S. N. Shanina, I. V. Smoleva, E. M. Tropnikov, B. A. Makeev, D. V. Kiseleva // Bull. of Perm University. Geology. – 2022. – Vol. 21. – No. 4. – P. 296–325.
- Savelyeva, E. A. Vymskiye mogil'niki XI-XIV vv. [Vym burial grounds of the XI-XIV centuries] / E. A. Savelyeva. – Leningrad: Leningrad State Univ. Publishing House, 1987. – 200 p.
- Sidorov, A. S. Pamyatniki drevnosti v predelakh Komi kraya [Ancient monuments within the Komi region] / A. S. Sidorov // Komi mu, 1925. – No. 2 (912). – P. 40–50.
- Zakharov S. D. Izdeliya iz stekla i kamennyye busy) [Glassware and stone beads] / S. D. Zakharov, N. A. Kuzina // Arkheologiya severnorusskoy derevni X-XIII vv. (material'naya kul'tura i khronologiya [Archeology of the Northern Russian village of the X-XIII centuries (material culture and chronology)]. Vol. 2. – Moscow: Nauka, 2008. – P. 142–213.
- Zakharov, S. D. Mininskiy arkheologicheskiy komplek: khronologiya i dinamika razvitiya [Minin archaeological complex: chronology and dynamics of development] / S.

D. Zakharov, N. A. Makarov // Arkheologiya severnorusskoy derevni X-XIII vv. (material'naya kul'tura i khronologiya) [Archaeology of the Northern Russian village of the X-XIII centuries (material culture and chronology)]. Vol. 2. – Moscow: Nauka. – 2009. – P. 290–316

- Fekhner, M. V. K voprosu ob ekonomicheskikh svyazyakh drevnerusskoy derevni X-XIII vv. [On the question of economic ties of the ancient Russian village of the X-XIII centuries] / M. V. Fekhner. – Proc. of the State Historical Museum, 1959. Issue 33. – P. 149–224.
- Rudenko, K. A. Bulgarskoye serebro [Bulgarian silver] / K. A. Rudenko. – Kazan, 2015. – 528 p.
- Sedova, M. V. Yuvelirnyye izdeliya Drevnego Novgoroda (X-XV vv.) [Jewelry of Ancient Novgorod (X-XV centuries)] / M. V. Sedova. – Moscow: Nauka, 1981. – 193 p.
- Riederer, J. Metallanalysen romischer Bronsen / J. Riederer // Toreutik und figurliche Bronzen romischer Zeit, Akten der 6. Tagung uber antike Bronzen, Berlin 1980. – Berlin, 1984. – P. 220–225.

Информация об авторах:

Савельева Элеонора Анатольевна – доктор исторических наук, главный научный сотрудник отдела археологии Института языка, литературы и истории Коми НЦ УрО РАН (167982, Российская Федерация, Республика Коми, г. Сыктывкар, ул. Коммунистическая, д. 26; e-mail: eleonorasav@yandex.ru).

Силаев Валерий Иванович – главный научный сотрудник Института геологии имени академика Н. П. Юшкина ФИЦ Коми НЦ УрО РАН (167982, Российская Федерация, Республика Коми, г. Сыктывкар, ул. Первомайская, д. 54; e-mail: silaev@geo. komisc.ru).

Филиппов Василий Николаевич – старший научный сотрудник Института геологии имени академика Н. П. Юшкина ФИЦ Коми НЦ УрО РАН (167982, Российская Федерация, Республика Коми, г. Сыктывкар, ул. Первомайская, д. 54; e-mail: filippov@geo.komisc.ru).

Хазов Антон Федорович – научный сотрудник Института геологии имени академика Н. П. Юшкина ФИЦ Коми НЦ УрО РАН (167982, Российская Федерация, Республика Коми, г. Сыктывкар, ул. Первомайская, д. 54; e-mail: akhazov@geo. komisc.ru).

Authors:

Eleonora A. Savelyeva – Dr. Sci. (History), Chief Researcher at the Department of Archeology of the Institute of Language, Literature and History, Federal Research Centre, Ural Branch, RAS (26, Kommunisticheskaya st., Syktyvkar 167982, Russian Federation; e-mail: eleonorasav@yandex.ru).

Valery I. Silaev – Chief Researcher, Institute of Geology named after academician N.P. Yushkin, Federal Research Centre Komi Science Centre, Ural Branch, RAS (54, Pervomaiskaya st., Syktyvkar 167982, Russian Federation; e-mail: silaev@geo.komisc. ru).

Vasily N. Filippov – Senior Researcher, Institute of Geology named after academician N.P. Yushkin, Federal Research Centre Komi Science Centre, Ural Branch, RAS (54, Pervomaiskaya st., Syktyvkar 167982, Russian Federation, e-mail: filippov@geo. komisc.ru).

Anton F. Khazov – Researcher, Institute of Geology named after academician N.P. Yushkin, Federal Research Centre Komi Science Centre, Ural Branch, RAS (54, Pervomaiskaya st., Syktyvkar 167982, Russian Federation, e-mail: akhazov@geo.komisc. ru).

Для цитирования:

Савельева, Э. А. Цветные и благородные металлы в погребении № 115 Кокпомъягского могильника вымской культуры: археологический и археолого-минералогические аспекты / Э. А. Савельева, В. И. Силаев, В. Н. Филиппов, А. Ф. Хазов // Известия Коми научного центра Уральского отделения Российской академии наук. Серия «История и филология». – 2024. – № 1 (67). – С. 22–34.

For citation:

Savelyeva, E. A. Non-ferrous and precious metals in grave No. 115 of the Kokpomyag burial ground of the Vym culture: archaeological and archaeomineralogical aspects / E. A. Savelyeva, V. I. Silaev, V. N. Filippov, A. F. Khazov //Proc. of the Komi Science Centre, Ural Branch, Russian Academy of Sciences. Series «History and Philology». - 2024. - No. 1(67). - P. 22-34.

Дата поступления рукописи: 25.01.2024 Прошла рецензирование: 09.02.2024 Принято решение о публикации: 12.02.2024 Received: 25.01.2024 Reviewed: 09.02.2024 Accepted: 12.02.2024

Известия Коми научного центра Уральского отделения Российской академии наук № 1 (67), 2024
Серия «История и филология»
www.izvestia.komisc.ru