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Abstract

Itis demonstrated that the standard construction of Lax equa-
tions on Lie algebras can be extended to Lie superalgebras,
with the even subspace carrying the usual Lax equations.
The extended equations inherit the existence of the canoni-
cal trace polynomial integrals of motion. An extra set of inte-
grals exists in the odd subspace, with a nontrivial homological
structure of the orbit space. This establishes a curious alge-
braic link between integrable evolution equations, supersym-
metry and the deformation theory.
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Introduction

The substantial interest to graded Lie algebras arose
about 60 years ago, in the context of similarity between de-
formations of complex-analytic structures on compact man-
ifolds and deformations of associative algebras and Lie al-
gebras [1-4], in combination with the relevant cohomologi-
cal theories [5, 6]. In these algebras, the interplay of “even”
and “odd” subspaces carrying skew-symmetric and symmet-
ric multiplication laws plays the crucial role. Later, the new
interest to these structures arose in theoretical physics, in
the context of supergauge symmetries relating particles of
bosonic and fermionic statistics. Although supersymmetry
has not been experimentally discovered, these studies stim-
ulated an interesting new mathematics [7-10].

At the same time, the advent of the inverse scattering
method gave a boost to the studies of Lie groups and Lie al-
gebras in mathematical physics, in the context of integrability
of nonlinear evolution equations. In such studies, the nonlin-
ear dynamics is encoded in the evolution under the “semi-
linear” Lax equations possessing trace polynomial integrals
of motion or revealing the isospectrality of the evolving oper-
ators [11-16].

In this work, the standard construction of the Lax equa-
tions on Lie algebras is extended to Lie superalgebras, the
Zo-graded Lie algebras of supersymmetry. The extended
equations possess the canonical trace polynomial integrals of
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motion and so can be applied in a similar manner to nonlin-
ear problems. It is shown that the odd subspace admits extra
polynomial integrals of motion independent of the canonical
integrals. The geometry of the relevant orbit spaces is stud-
ied revealing a nontrivial homological algebra. Thus, an alge-
braic link is established between integrable evolution equa-
tions, supersymmetry and the deformation theory. This work
can be regarded as a continuation of the previous work by the
author [17].

It is assumed that the reader is familiar with the basics
of the theory of Lie groups and Lie algebras and their rep-
resentations as well as the basics of algebraic geometry and
homological algebra.

1. Lie superalgebras

The algebra of supersymmetry comes from theoretical
physics as an attempt to combine into one unified theory two
statistically different types of particles, bosons and fermions.
According to the method of second quantization, the (complex
finite-dimensional) vector state spaces of these two types are
separated by parity, the one being represented in the even
space [0, the other in the odd space I'. To relate these spaces,
one assumes that the same symmetry (connected) Lie group
G linearly acts on both spaces. The group actions are repre-
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sented by the group homomorphisms
T :G — GL(I"), k=0,1.

The even action is assumed to be simply the adjoint action of
G,T° = Ad,ie. [V is the Lie algebra of the Lie group G. The
bilinear skew-symmetric bracket in [©

L1200 <0 = 10 1°

[xv y]O = _[yv X
is the standard Lie bracket. The differential ad of 7°
ad : I' = End(1°), ad(z)y = [z,y]°, z,y € © (1)

represents the adjoint linear action of [? on itself. It is further
assumed that the odd action 7! is tensorially intertwined with
T°. This means that a symmetric bilinear bracket

S e e N L e

is defined on [* with values in [ such that
[T (g)x, T (9)y]" = T°(g)[z,y]'",
zyell, ¢gea. (2)

Using the brackets [,]*, k = 0, 1, and the differential of
the action 7"

p: 10— End(l"), 3)

a bilinear bracket [, ] on the direct sum

(=ral
can be defined as
[z, 9]° 2y el
[z, y] =9 [y, zyel,
p(z)y, el yell.

With this bracket, the graded vector space [ becomes a
(complex) Lie superalgebra, i.e., a Zo-graded algebra whose
bracket satisfies the conditions

[z,y] C B, [z, y] = —(=1)[y, 2],
(=1 [z, [y, 2]] + (=1)%"[y, [2, 2]+
+(=1)"[z, [2,y]] =0
Veelt,yel zclV, &,n,v=0,1.

(4)

The skew-symmetry between [ and [* and the graded Jacobi
identity are externally imposed on z,y, z € I! (to naturally
extend the representation theory) while the rest of the condi-
tions follow the intrinsic properties of the construction above.

The combined action 7" = (7, T") of the Lie group G
on the Lie superalgebra [ = (I°, [') generates the structural
group of automorphisms of [,

[T(g)x, T(g9)y] = T(g)[z,y],

The differential (ad, p) of this action generates a represen-
tation of the Lie algebra [° on L.

r,yel, geG. (9)

2. Representations

Representations of Lie superalgebras are Lie superalge-
bra homomorphisms

¢: =L, ¢(z,9]) = [o(x),o(y)]L (6)

into operator Lie superalgebras L. The latter are constructed
as follows. For a Z,-graded (complex finite-dimensional)
vector space

V=vle Vv,

let L°, L' be the spaces of linear operators V' — V of ho-
mogeneous degrees 0,1. This means that operators from L°
act on the grades while those from L! permute the grades,

L(]vk C Vk k=0.1 le(),l C VLO.
On the Z,-graded vector space
L=L"qL!

define a bracket [, |, by the rule
[X,Y], = XY — (—1)¥Y X,

(7
XeILf, YelL &n=0,1.

With this bracket, L is a Lie superalgebra (the graded Jacobi
identity follows from Eg. (7). Representations of [ are homo-
morphisms of Egs. (6), (7) such that

o(F)CL*, k=01 (8)
In particular, the restrictions

¢° = ¢l 9)

to the even subspace are representations of the Lie algebra
1.

Nontrivial representations of Lie superalgebras always
exist. For example, the homomorphism

[ — Ider(l), z— 0, =[x, (10)

to the space of inner derivations of [ satisfies the requirement.
This representation generalizes the adjoint representation of
a Lie algebra. The existence of faithful representations (in a
more general context of graded Lie algebras over commuta-
tive rings) has been proved in Ref. [3]. Each faithful represen-
tation of [° (guaranteed by Ado’s theorem) can be extended to
a faithful representation of [.

3. Invariants and Lax equations

The group action 7" on [ admits a set of canonical invari-
ants, the (complex) trace polynomial functions on [

L[¢l(z) = Tr([p(2)]°), wel (M

taken for any power s > 0 and any representation ¢ of [.
In fact, according to Eq. (7), for X € L°and Y € L, the
bracket [X, Y], is the commutator of operators. Hence 7'
acts on operators of algebra representations by conjugation
and so preserves the traces of their powers. The restrictions
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of Eq. (9) generate the set of canonical invariants in the even
subspace,

12[¢°)(z) = L[¢")(z), x€l (12)

These are the standard trace polynomialinvariants generated
by the Lie bracket in [°.

The intertwining of Eq. (2) enables extra invariants to be
built for the group action 7' on [*. Precisely, for any invariant
f of the action T, the function

I'f)(z) = f([z, ),

is an invariant of the action 7°*. In fact, the map

zel, (13)

w:lt =10 wr)=[z,1] (14)
gives a (nonlinear) intertwining of 7" with 7°. Its composi-
tion fw with any invariant f of 70 is an invariant of 7. The
invariants given by Eq. (13) are called derived invariants.

For each £ = 0, 1, the canonical invariants I;[¢] of
Eq. (1) are integrals of motion (conservation laws) of evolu-

tion equations of the form

dijdt =[m,1], mel® 1l (15)

where m = m(t) is any time-independent or (continuously)
time-dependent magnitude. In fact, for any m, including the
case where m depends on [, the trajectories of the solutions
to Eq. (15) in the subspaces [* belong to orbits of the group ac-
tions T determined by the initial values. Egs. (15) are called
Lax equations on the Lie superalgebra .

In the subspace [*, Eq. (15) is rewritten as

dijdt = p(m)l, lel* (16)

where p is the representation of [° on [ given by the differ-
ential of the group action 7" (see Eq. (3)). This is a general-
ization of the standard Lax equation on the Lie algebra [° to
another representation subspace [*. Similar generalizations
(outside the Lie superalgebras theory) have been considered,
for example, in Ref. [16]. The derived invariants I'[f] given
by Eq. (13) are integrals of motion of Eq. (16) additional to the
canonical invariants.

The property of the Lax equations to have the “m-univer-
sal” conservation laws is very useful. It enables one to in-
tegrate nonlinear evolution equations (15) generated by any
(continuous) dependences of m on [ and .

4. Geometry of orbits

Since the invariants are integrals of motion, the trajecto-
ries of evolution under Eg. (15) belong to the intersections of
integral surfaces, on which the invariants take constant val-
ues determined by the initial states. Each such intersection
is filled with orbits of the group action 7" on I. The form of
the canonical invariants I4[¢] suggests their strong depen-
dence on the representations ¢. The representations (on the
same vector space) are subdivided into equivalence classes
with respect to the canonical invariants,

dgeG: ¢ =9T(g) — L[¢]=Llo]

Besides this, it is hard to formulate anything general about
the integral surfaces created by the invariants I;[¢).

The derived invariants 7' [f] on the odd subspace I' are
different. They are written as compositions of any 7°-invari-
ant with the map w of Eq. (14) that is independent of repre-
sentations of [. By Eq. (5), we have

[T (g)z, T (g9)x] = T°(g9)[x, z],
VgeG, xzecl. (17)

Hence, if the vector v = [z, 0] € I° is fixed under the
group action 70,

T(g)v=v Vge€QG, (18)

then the trajectory of the solution /(¢) to Eq. (16) starting from
x¢ is completely contained in the set

S, ={zxecl':[z,z] =0} (19)

In fact, in this case, any constant function f is suitable for the
derived invariant I [ f]. The space of the vectors v defined by
Eq. (18) is the zeroth cohomology group h° (G, I°) of the group
G with coefficients in [°. This space also forms the centre of
the Lie algebra [°.

For any v, the relation that defines the set S, is quadrat-
ically polynomial with respect to the coordinates in [*, so the
set S, is an (affine) algebraic variety. By Hilbert's Nullstel-
lensatz, it is defined by the zero locus of a proper ideal in the
polynomial ring C[I'] containing these quadratic polynomi-
als. There is an obvious link of Eqg. (19) to the classical prob-
lem of intersections of quadrics. The variety S, is symmet-
ric under the reflection with respect to the origin x — —x.
It is non-compact in general: the homotheties v — v,
x — VA x (A # 0) make the varieties S, and Sy, isoomor-
phic. In the case v = 0, removing the trivial orbit z = 0, S,
becomes compact as a projective variety.

The special property of the variety S, of Eq. (19) is that
it lies in the intersection of integral surfaces of all canonical
polynomial invariants passing through the point x,. In fact,
for any representation ¢ of [ and any = € [, in accordance
with Egs. (6), (7), (8),

([, 2]) = 2[p(x)]*

and any odd power of the operator ¢(x) permutes the even
and odd subspaces and so has a zero trace. Hence, we obtain
for any integer s > 0 and any representation ¢

Is[¢)(x) = 27°Tr ([¢([z, z])]*)
L 1[¢](xz) =0, zel'.

According to Egs. (17), (18), the set .S, is filled with orbits
of the group action 7' on ['. This generates the orbit space
S, /G that classifies paints of S,. Two points belong to the
same equivalence class if they belong to the same orbit. In
the case v # 0, we will assume that the group action 7! is
irreducible on [*.

The classification problem .S, /G can be approached as
follows. For any z € S, let 9, be the inner derivation de-
fined by the homomorphism of Eq. (10). In other words,

(20)

Oy =[z,y], €S8, yeL
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It follows from the Jacobi identity (see Eq. (4)) that
20,0.y = [v,y].
Eq. (18) is equivalent to the condition
[m,v] =0 ¥Ym el
By Eqg. (21), this implies
9,0,1° = 0.
Also, we have

v, 9] = [y, y],y] =0 VyeSs,

where we again used the Jacobi identity. Hence, S, is a sub-
set of the centralizer of v in [1. This centralizer is G-invariant
because v is G-fixed. For v # 0, we assumed that the 7" -
action is irreducible, so the whole [* centralizes v (otherwise,
there would exist a smaller invariant subspace of T'),

[, v] = 0. (23)
By Egs. (21), (23), we conclude then that
0,0, = 0. (24)
Combination of Egs. (22), (24) gives
0,0, = 0.
Considering the restrictions on the even and odd subspaces
05 = ul, k=01,

we have on [
8190 = 829! = 0.

This enables the Lie superalgebra [ to be represented as the
“loop” chain complex

0

=1

o}
with respect to the differential 0,. Introducing the kernels
and images (the cycles and boundaries)

Zf = ker 83’;, Bg’l =1im 8;’0,

we assign to each point z € S, the even and odd homology
groups as the quotients

Hy = Z;/ By,

The groups H*, H*
same G-orhit.
Introducing the vector spaces

Z, =207, B,=B ¢ B H.=H'® H!,

k=0,1. (25)

, are isomorphic if x, " belong to the

we see that 7, is a Lie superalgebra that is a subalgebra of
[, B, isanidealin Z, andso H, = Z, /B, also becomes a
Lie superalgebra.

The subspaces Z_, B! are respectively the tangent space
to .S, and the tangent space to the orbit of = at the point .
If the odd homology group is trivial, H! = 0, then the or-
bit of « covers a whole neighbourhood of the point x in .S,
All small deformations of 2 within S, are GG-orbit equivalent.

Such points x are called rigid. For Z} = 0 (for v # 0), the
set .S, consists of one point = (which in this case is fixed un-
der the group action, By = 0). If H; # 0 then the orbit of x
tends to lie strictly inside .S,,.

The subspace Z{ is the Lie subalgebra of [° that central-
izes x: [Z9,z] = 0. The subspace B is the image of x
under the odd inner derivations: BY = [I*, z]. By the Jacobi
identity and Egs. (19), (23), it is a Lie subalgebra (actually an
ideal) of Z0. If the even homology group is trivial, H? = 0,
then z is a simple point of S,,. In fact, let H? = 0 and let
x +u € S, be a deformation of the point z in S,. Then u
satisfies the deformation equation

20%u + [u,u] = 0. (26)
We can write the solution to Eq. (26) as a formal power series
u=zup + 2%us + ... (27)

in some (complex) scalar parameter z. The first term

28iu1 =0 —r Ui € Z;

can be chosen arbitrarily. To find the higher terms, the follow-
ing induction can be applied. Let the first ¢ terms be known.
Then they satisfy the equations
20 u, + J, =0,
r—1
J. = Z[up,ur_p], r=1,...,q.
p=1

To find the (¢ + 1)th term, the following equation should be
solved

(28)

201 ugi1 + Jyp1 = 0. (29)

Let

q

ul® = Z 2" u,

r=1
be the gth partial sum. Using the Jacobi identity, we have
[z + ul® [z + G u(q)]] —0.

Taking the (¢ + 1)th power of z, with the use of Egs. (23), (24),
we obtain
q
[z, Jg41] + Z[uq+1fr7 2[z,u,] + J;] = 0.

r=1
By Egs. (28), this gives
82Jq+1 = 0

This means that J, 1 € Z2 and so J,1 € BY because we
assumed H? = 0. Then Eq. (29) can be resolved for w1,
uniquely if we take the zero projection to Z!. Hence, all the
terms of the power series of Eq. (27) can be uniquely found.
This series converges for any u; as long as |z| is sufficiently
small. We obtain that the point x € S, can be analytically
deformed within S, in any direction given by the space Z! of
tangent vectors to S,,. Thus, for H? = 0, the point z is sim-
ple. A structure of a complex manifold on S, can be defined
in a neighbourhood of . The situation is very similar to that
described in Ref. [1].
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The consideration of dimensions gives the following rela-
tions

dim HY = dim* — ) " dim BY,
p=0,1
dim Z* = dim (* — dim B®V | k=0, 1.

(30)

Here in addition to Eq. (25) we used the isomorphisms
BO,l ~ [l,O/Zl,O.
Also, since v € BY C Z9, we obtain

v#E0 — dimZ°>dimB°>1  (3))

(in particular, if S,, # () for v # 0 then the group action T
on [! cannot be free). It immediately follows from Eq. (30) that
if the subspaces (! are not isomorphic, dim [* # dim [°
(i.e., the representation spaces of ad and p are not isomorphic
as vector spaces), then the groups H2! are not simultane-
ously trivial and are not isomorphic, dim H} # dim H?.
This is valid for each point x € S5,. This means, for in-
stance, that neither point x € S, can be simultaneously
a simple point of the variety .S,, and have its orbit cover-
ing the whole neighbourhood of x in M,,. In particular, for
dim ' # dim°, the variety S, cannot be a (nontrivial
smooth) homogeneous space of the G-action.

Egs. (30), (31) enable an estimation of possible orbit
classes in the space .S, /G to be made. The existence of func-
tions on [! that separate orbits in S, and their links to the
homology on .S, are interesting open questions. In addition to
Eg. (20), note that, for the “adjoint representation” of Eq. (10),
the canonical integrals take the zero values on S,

¢(x) = Oq

In fact, for z € S, we have 9> = 0, so the operator 9, is
nilpotent and its all positive powers have a zero trace.

—  Llpl(x) =0,z €S, s>0.

5. Conclusion

We have shown that the well-known construction of the
Lax equations on Lie algebras can be extended to Lie super-
algebras, important in mathematics and theoretical physics
in their relation to the deformation theory and supersymme-
try. Like the usual Lax equations, the extended ones admit the
canonical trace polynomial integrals of motion which can be
used in the integrability theory for nonlinear evolution equa-
tions. Besides the canonical integrals, the extra set of derived
integrals occurs in the odd subspace, as a result of tensorial
intertwining with the even subspace. This new feature is due
to the symmetric character of multiplication within the odd
subspace. The orbit spaces generated by constant values of
the derived integrals [z, x] = v, where v belongs to the Oth
cohomology group of the underlying Lie group action, possess
the natural (co)homological structure with respect to the in-
ner derivations 0,. This structure is generically nontrivial,
giving obstacles for the integral surfaces to be locally homo-
geneous spaces. These results algebraically relate the inte-
grability theory of evolution equations with supersymmetry
and the deformation theory.

The future work can be focused on possible connections
of the orbit space .S, /G with the “intrinsic properties” of the
algebraic variety .S,, independent of its embedding into the
odd subspace [* (say, in the spirit of the Zariski and Mum-
ford theories). An extension of the described algebraic struc-
tures to the general graded Lie algebras should be possible
in terms of their natural grading into the even and odd sub-
spaces. From the point of view of physical applications, it can
be interesting to relate the above constructions to integrable
nonlinear dynamics and supersymmetry (for instance, to con-
nect Egs. (19), (26) to symplectic geometry and Hamiltonian
dynamics as well as to the extended supersymmetry theory,
say, for the Poincaré algebra). Possible relations of the de-
formation Eq. (26) to the Maurer-Cartan formalism and the
gauge theories can also be interesting.

The author declares no conflict of interest.
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