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Abstract
Extending the gauge formalism of the physical field theory
to general graded Lie algebras, we show that in this formal-
ism cohomology groups naturally arise, invariant under gauge
transformations. Links of these groups to the Chern-Weil the-
ory of characteristic classes are established. Applications of
these cohomologies to Gerstenhaber-Nijenhuis deformations
and Yang-Mills equations are discussed. These results can
also be useful in the theory of integrable evolution equations
and geometry of Lie groups.

Аннотация
Распространяя калибровочный формализм физической
теории поля на общие градуированные алгебры Ли, мы
показываем, что в этом формализме естественным обра-
зом возникают группы когомологий, инвариантные относи-
тельно калибровочных преобразований. Устанавливаются
связи этих групп с теорией характеристических классов
Чжэня–Вейля. Обсуждаются приложения этих когомологий
к деформациям Герстенхабера-Нийенхейса и уравнениям
Янга-Миллса. Эти результаты могут быть полезны также
в теории интегрируемых эволюционных уравнений и гео-
метрии групп Ли.
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Introduction

The gauge formalism of the physical field theory is an im-
portant tool that regulates redundant degrees of freedom and
utilizes symmetries of the Lagrangian. It is considered as a
basis for a unified theory of physical interactions.

The gauge formalism has two basic mathematical compo-
nents, geometric and algebraic. Geometrically, gauge fields
are associated to connections on principal fibre bundles over
the space-time, with the structure group being the symme-
try group. Algebraically, the gauge formalism is based on the
theory of graded Lie algebras of exterior differential forms on
manifolds, with values in a Lie algebra [1].

In these notes, the abstract algebraic component of the
gauge theories, leaving aside their geometric features, is ap-
plied to general graded Lie algebras. The basic notations of
the gauge formalism find their general algebraic analogues.
It is shown that to each abstract gauge field a cohomology
group can be naturally associated, which is an invariant of the
gauge group. We also show that isomorphism classes of these
groups are closely related to the Chern-Weil theory of char-
acteristic classes. These homological invariants are applied
to a curvature-preserving deformation theory, in the sense of
the Gerstenhaber-Nijenhius formalism [2, 3], and to the study
of solutions to the Yang-Mills equations [1].

The results obtained can be useful also in the theory of
integrable evolution equations (existence of integrable hier-
archies [4] on non-Euclidean manifolds) and geometry of Lie
groups (Maurer-Cartan forms [5]).

1. Gauge theories on graded Lie algebras
LetΩ be a graded Lie algebra overR, i.e., aZ-graded real

vector space
Ω =

⊕
k∈Z

Ωk

with a bilinear operation (bracket)

[, ] : Ω× Ω→ Ω

that is graded skew-symmetric, respects the grading and sat-
isfies the graded Jacobi identity

[ξ, η] = −(−1)kl[η, ξ], [ξ, η] ∈ Ωk+l,

(−1)kp[ξ, [η, θ]] + (−1)lk[η, [θ, ξ]]+

+(−1)pl[θ, [ξ, η]] = 0,

ξ ∈ Ωk, η ∈ Ωl, θ ∈ Ωp.

(1)

By Eq. (1), graded Lie algebras are not Lie algebras in the usual
sense (although the 0th grade Ω0 and the even part

⊕
Ω2k

are usual Lie algebras). The terminology we use is induced
by the gauge formalism and the deformation theory (see, for
instance, Refs. [2, 5]). In the context of supersymmetry (ba-
sically in the even-odd Z/2 setting), algebras with brackets,
satisfying conditions (1), are called graded Lie superalgebras
(see, for instance, Ref. [3]). In the context of usual Lie alge-
bras, graded Lie algebras are understood as usual Lie alge-
bras, carrying grading.
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Elements of the grade Ωk are called homogeneous ele-
ments of degree k. Let Ek be the space of homogeneous
operators on Ω of degree k, i.e., endomorphisms of Ω which
shift the grades by k,

Ek = {A ∈ End(Ω) : AΩl ⊆ Ωl+k, l ∈ Z}.

Then the endomorphisms space is written as a graded vector
space

End(Ω) ≡ E =
⊕
k∈Z

Ek.

Define a bracket on E by the rule

[A,B]0 = AB − (−1)abBA,

A ∈ Ea, B ∈ Eb.

With this bracket the space E of endomorphisms of Ω be-
comes a graded Lie algebra. In fact, the bracket [, ]0 satisfies
relations similar to Eq. (1).

Let ρ denote the adjoint representation of the algebra Ω,

ρ : Ω→ E, ρ(ξ)η = [ξ, η],

ρ([ξ, η]) = [ρ(ξ), ρ(η)]0.
(2)

We assume that ρ is faithful,

ker ρ = 0, (3)

i.e., the algebra Ω has trivial centre.
Suppose a (real) Lie group G acts on the algebra Ω by

automorphisms, i.e., there is a representation

T : G→ GL(Ω),

ρ(T (g)ξ) = S(g)ρ(ξ).

g ∈ G, ξ ∈ Ω.

(4)

Here S is the action of G on the algebra E by conjugation
automorphisms,

S(g) : A 7→ T (g)AT (g−1),

g ∈ G, A ∈ E.

Further, the elements of Ω1 are called gauge fields.
Let d be a differential on Ω, i.e., a derivation of degree 1

that squares to zero,

ρ(dξ) = [d, ρ(ξ)]0, ξ ∈ Ω,

d ∈ E1, dd = 0.
(5)

To each gauge field ω ∈ Ω1 we associate the linear operator

dω = d+ ρ(ω) ∈ E1, (6)

which we call the covariant derivative along ω, and the mag-
nitude

ϕ(ω) = dω +
1

2
[ω, ω] ∈ Ω2, (7)

which we call the curvature (or the gauge field strength) of
ω. As a consequence of Eqs. (2), (5), for each gauge field, the
covariant derivative is a derivation of degree 1,

ρ(dωξ) = [dω, ρ(ξ)]0, ξ ∈ Ω,

which is connected to the curvature by the relations

dω(ϕ(ω)) = 0, dωdω = ρ(ϕ(ω)). (8)

Proposition 1. Suppose there exists a smooth function

ν : G→ Ω1

such that
ρ(ν(g)) = S(g)d− d. (9)

Then, for all g ∈ G, the map

K(g) : Ω1 → Ω1,

ω 7→ T (g)ω + ν(g)
(10)

acts on covariant derivatives by the rule

dK(g)ω = S(g)dω. (11)

Proof. This is a simple consequence of Eqs. (60), (9). �
Note that, since the adjoint representation ρ is faithful,

the function ν(g) (if exists) is unique. The map (10) is called
the gauge transformation corresponding to g ∈ G. Two
gauge fields ω, ω′ are called equivalent (or gauge equiva-
lent), ω ∼ ω′, if they are connected by a gauge transforma-
tion, ω′ = K(g)ω, for some g ∈ G.

Corollary 1. It follows from Eqs. (60), (9) that the function
ν satisfies the property

ν(hg) = K(h)ν(g).

Hence, the gauge transformations form a Lie group,

K(hg) = K(h)K(g), h, g ∈ G,

which we call the gauge group and denoteK(G).

Corollary 2. Acting on both sides of Eq. (11) by the operator
dK(g)ω and using Eq. (8), we see that gauge transformations
act on curvatures by the rule

ϕ(K(g)ω) = T (g)ϕ(ω).

Corollary 3. By Eq. (9),

dν(g) = S(g)d,

where, for each g ∈ G, the right-hand side squares to zero.
Hence, for each g ∈ G, the covariant derivative dν(g) is a dif-
ferential on Ω. Since the adjoint representation ρ is faithful,
by Eq. (8), the curvature of ν(g) is zero. This gives

dν(g)dν(g) = 0, ϕ(ν(g)) = 0.

By Eq. (10), ν(g) is equivalent to the zero gauge field,

ν(g) ∼ 0, g ∈ G.

The gauge fields ν(g) are called pure gauge fields.
The assumption of Proposition 1, Eq. (9), is fulfilled at least

in two cases: where the differential d is an inner derivation
or where T (g) are inner automorphisms. In the former case,
we have d = ρ(η) for some η ∈ Ω1 (with [η, η] = 0), so
ν(g) = T (g)η − η. In the latter case, the differential te of
the representation T at the identity element e of the group
G maps the Lie algebra g of the group G to the Lie algebra
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ρ(Ω0) of inner derivations of degree 0, i.e., defines a repre-
sentation

te : g→ ρ(Ω0) ⊆ E0

(accompanied with a homomorphism g → Ω0, as ρ is faith-
ful). According to Eq. (9), we have ν(e) = 0. The infinitesimal
form near the identity element of the group G of the right-
hand side of Eq. (9) is

[te(a), d]0, a ∈ g.

In the case where te(a) is an inner derivation for all a ∈ g,
using the fact that inner derivations form an ideal ider(Ω) in
the algebra of all derivations der(Ω) ⊆ E , we obtain that
the right-hand side of Eq. (9) is infinitesimally realised as an
inner derivation. Since thie right-hand side is a derivation for
all g ∈ G, this local analysis is extended to the whole group
G in the standard way, by left translations within G. We ob-
tain then that, if T (g) are inner automorphisms, the right-
hand side of Eq. (9) forms an inner derivation for all g ∈ G.
Such a situation realises, for instance, in the special case of
the natural action of the Lie algebra Ω0 on Ω. The latter can
be extended to an inner action of the (local) Lie group that has
Ω0 as its Lie algebra.

Note that one of derivations d or te(a) is not necessar-
ily inner, as the ideal ider(Ω) ⊆ der(Ω) is not necessarily
prime. Generally speaking, Eq. (9) means that the S-action
preserves the coset generated by the derivation d in the quo-
tient der(Ω)/ider(Ω). The case whereT (g) are inner auto-
morphisms takes place, for instance, in the field-theoretical
gauge formalism.

Eq. (3) suggests that we introduced an abstract non-
abelian gauge theory. The abelian case corresponds to the
trivial bracket [, ] = 0, which gives ρ = 0. This reduces to
the situation where the representation S preserves the dif-
ferential, S(g)d = d (for instance, T is trivial), the covariant
derivative coincides with d for all gauge fields, dω = d, the
curvature reduces to ϕ(ω) = dω, and the function ν(g) is
chosen to have zero curvature, d(ν(g)) = 0 for all g ∈ G,
and to satisfy the group property of Corollary 1.

2. Homological invariants
The differential dmakesΩ a cochain complex and gener-

ates the graded cohomology group

H = ker d/im d.

The differential dν(g) also makes Ω a cochain complex with
the graded cohomology group

H(ν(g)) = ker dν(g)/im dν(g).

By Eq. (11), the T (g)-action is a quasi-isomorphism of these
cochain complexes, so the cohomologiesH(ν(g)) andH are
isomorphic,

H(ν(g)) ∼ H, g ∈ G.
This observation is generalised as follows.

Proposition 2. For each gauge fieldω ∈ Ω1, the covariant
derivative dω is a differential on the graded Lie subalgebra

Ω(ω) = ker (dωdω) ⊆ Ω (12)

and generates on Ω(ω) the graded cohomology group

H(ω) = ker dω/im dω.

Equivalent gauge fields have isomorphic cohomologies,

Ω(ω) ∼ Ω(ω′), H(ω) ∼ H(ω′),

ω′ = K(g)ω, g ∈ G.
Proof. Since dω commutes with dωdω , it maps the ker-

nel Ω(ω) to itself and acts on Ω(ω) as a differential. The
T (g)-action realises a quasi-isomorphism of the cochain
complexes for gauge-equivalent ω, ω′. �

Note that the subalgebra Ω(ω) is never zero. It is indeed
a graded Lie subalgebra ofΩ, as it coincides with the central-
izer of the curvature ϕ(ω). In fact, by Eqs. (1), (8), the curva-
ture ϕ(ω) itself belongs to Ω(ω). By definition, more gener-
ally, we have ker dω ⊆ Ω(ω). In the special case ϕ(ω) = 0,
the subalgebra (12) coincides with the ambient algebra,

Ω(ω) = Ω, ϕ(ω) = 0.

As mentioned, the pure gauge fields ν(g) all have zero cur-
vature. They are all equivalent to ω = 0, and the cohomol-
ogy groups H(ν(g)) are all isomorphic to the cohomology
group generated by the differential d. In general, however,
H(ω) ̸∼ H , even for ϕ(ω) = 0.

By Proposition 2, the cohomology groups H(ω) are in-
variants of the gauge groupK(G). The cohomologiesH(ω)
classify points of the orbit space Ω1/K(G). For H(ω) ̸∼
H(ω′), the gauge fields ω and ω′ are not equivalent, and
theirK(G)-orbits are different.

For each gauge field ω, the cohomology group H(ω)
forms a graded Lie algebra. In fact, for each differential D,
the image imD is an ideal in the kernel kerD. This fol-
lows from the fact thatD is a derivation of Ω, i.e., ρ(Dξ) =
[D, ρ(ξ)]0, for all ξ ∈ Ω, and DD = 0. Then it is easy to
verify that the cohomology class of the bracket [ξ, η], where
ξ, η ∈ kerD, depends only on the cohomology classes of
ξ, η. Hence, the bracket [, ] in the algebraΩ(ω) generates a
bracket in the cohomology groupH(ω). This bracket inher-
its the properties (1), i.e., it is again graded skew-symmetric,
respects the grading and satisfies the graded Jacobi identity.

In this context, the quadratic map

f : ker dω ∩ Ω1(ω)→ ker dω ∩ Ω2(ω),

f : u 7→ [u, u]

generates a quadratic map of cohomology groups

f ′ : H1(ω)→ H2(ω).

By Eq. (8), ϕ(ω) ∈ ker dω ∩Ω2(ω), so the cohomology class

[ϕ(ω)] ∈ H2(ω)

can be associated to each gauge field ω ∈ Ω1. By Propo-
sition 1 and Corollary 2, the property of ω to have trivial or
a nontrivial cohomology class [ϕ(ω)] is gauge-invariant. In
fact, the condition ϕ(ω) = dω(ξ(ω)) implies

ϕ(K(g)ω) = T (g)(ϕ(ω)) =

= T (g){dω(ξ(ω))} = dK(g)ω{T (g)(ξ(ω))}.
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These observations are useful for the applications below.

3. Chern classes
Isomorphism classes of the even cohomology groups

H2k(ω) can be put into the context of Chern characteristic
classes as follows.

Let a graded real vector space Ω̄ =
⊕

Ω̄k be given that
generates a cochain complex with a differential d̄ and the rel-
evant cohomology group H̄ =

⊕
H̄k . For each gauge field

ω, consider the cochain complex Ω(ω) with the differential
dω introduced in Section 2. Let

pω : Ω(ω)→ Ω̄

be a “quasi-cochain map”, i.e., a linear map that respects the
grading and maps dω-closed elements to to d̄-closed ele-
ments,

qωdω = d̄pω (13)

with some map qω : Ω(ω) → Ω̄. Considering the curvature
ϕ(ω) ∈ Ω2(ω), it follows from Eqs. (8), (13) that the mag-
nitude pω(ϕ(ω)) ∈ Ω̄2 is d̄-closed. Hence, it generates the
cohomology class

c1(ω) = [pω(ϕ(ω))] ∈ H̄2,

which we call the first Chern class of ω in H̄ .
The terminology is induced by the classical Chern-Weil

theory of characteristic classes, which links differential ge-
ometry and algebraic topology and plays an important part
in topology of principal fiber bundles and vector bundles. In
the space of connections ω on such a bundle, with the adjoint
gauge group action, Ω̄ is the de Rham complex of the base
manifold, and pω is generated by the Chern-Weil homomor-
phism (see, for example, [6] and references therein).

The following result shows that the first Chern class is an
invariant of gauge transformations and in certain cases de-
pends only on the class [ϕ(ω)] ∈ H2(ω) introduced in Sec-
tion 2. In fact, c1(ω) is a characteristic class of isomorphisms
of the cohomology groupsH(ω).

Proposition 3. The first Chern class is gauge invariant,

c1(ω
′) = c1(ω), ω′ = K(g)ω, g ∈ G,

and under one of the conditions
i) pω is a cochain map, i.e., in Eq. (13) qω = pω , or
ii)ω is a solution to the Yang-Mills equation, d∗ω(ϕ(ω)) =

0 (see Section 5),

c1(ω) = [pω[ϕ(ω)]], [ϕ(ω)] ∈ H2(ω). (14)

Proof. Under the gauge transformations, the relevant
cochain complexes, the quasi-cochain maps, the covariant
derivatives and the curvatures are transformed as

Ω(ω′) = T (g)Ω(ω), pω′T (g) = pω, qω′T (g) = qω,

dω′T (g) = T (g)dω, ϕ(ω′) = T (g)ϕ(ω).

This implies
pω′(ϕ(ω′)) = pω(ϕ(ω)),

and we obtain that c1(ω) is gauge invariant. Further, under
condition i), the cochain map pω maps cohomology classes
to cohomology classes. This implies Eq. (14). Under condi-
tion ii), we have ϕ(ω) ⊥ im dω (see Section 5), so ϕ(ω) has
zero projection to the space dωΩ1(ω). This implies ϕ(ω) =
[ϕ(ω)] and leads again to Eq. (14). �

Note that if the maps pω are T -invariant,

pωT (g) = pω,

then pω ≡ p can be chosen independently of ω.
Corollary 4. Under one of conditions i) or ii) of Proposition

3,

[ϕ(ω)] = 0 ∈ H2(ω) −→ c1(ω) = 0 ∈ H̄2.

In particular, gauge fields of zero curvature have trivial first
Chern class. For example, pure gauge fields satisfy this con-
dition.

Higher Chern classes can be introduced as follows. Let
the bracket [, ] be generated by some associative bilinear op-
eration ∧, i.e.,

[ξ, η] = ξ ∧ η − (−1)xyη ∧ ξ, ξ ∈ Ωx, η ∈ Ωy.

We assume that the operation ∧ preserves the automor-
phisms actionT (G), the differential d remaining a derivation
of degree 1 that squares to zero,

(T (g)ξ) ∧ (T (g)η) = T (g)(ξ ∧ η), ,
d(ξ ∧ η) = (dξ) ∧ η + (−1)xξ ∧ dη, dd = 0.

Using the notation

ϕ(ω)k = ϕ(ω) ∧ . . . ∧ ϕ(ω) (k times),

for each k = 1, 2, . . ., we define the kth Chern class to be

ck(ω) = [pω(ϕ(ω)
k)] ∈ H̄2k.

Eq. (8) is generalized as

dω(ϕ(ω)
k) = 0,

so pω(ϕ(ω)k) are d̄-closed, and the Chern classes are well-
defined.

Like the first Chern class c1, the higher Chern classes are
also gauge-invariant, being characteristic classes of isomor-
phisms of the cohomologies H(ω). Under one of conditions
i) or ii) of Proposition 3, Eq. (14) generalizes to

ck(ω) = [pω[ϕ(ω)
k]], [ϕ(ω)k] ∈ H2k(ω).

Classical Chern classes c′k(ω) are defined in a different
manner, being homogeneous polynomial combinations of the
classes ck(ω)we introduced. This is related to formal expan-
sions [6]

det (1 + tϕ(ω)) = 1 + tc′1(ω) + t2c′2(ω) + . . .

Here the first Chern class (up to scaling related to integer co-
homologies) coincides with that we introduced,

c′1(ω) = c1(ω).
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4. Gerstenhaber-Nijenhuis deformations
The cohomology groups H1(ω), H2(ω) play an impor-

tant role in the curvature-preserving deformations, in the
general framework of the Gerstenhaber-Nijenhuis theory [2,
3], as described below.

LetM(ϕ̄) be the manifold of gauge fields of a fixed cur-
vature ϕ̄,

M(ϕ̄) = {ω ∈ Ω1 : ϕ(ω) = ϕ̄}.

By Eqs. (8), (12), we have

ω − ω′ ∈ Ω1(ω) = Ω1(ω′), ω, ω′ ∈M(ϕ̄).

Proposition 4. Let ω ∈ M(ϕ̄) have trivial second coho-
mology group,H2(ω) = {0}, and ker dω ∩ Ω1(ω) ̸= {0}.
Then ω can be deformed within the manifoldM(ϕ̄) by a for-
mal power series

ω′ = ω + λu1 + λ2u2 + . . . ∈M(ϕ̄),

λ ∈ R, uk ∈ Ω1(ω),
(15)

in the direction of any tangent vector u1 ∈ ker dω .

Proof. The power series (15) is supposed to solve the equa-
tion

dω′ +
1

2
[ω′, ω′] = ϕ̄,

which at λ = 0 is solved by the chosen ω ∈M(ϕ̄). We have
formally

ω′ = ω + u, dωu+
1

2
[u, u] = 0,

u = λu1 + λ2u2 + . . .

The first coefficient u1 satisfies the equation

dωu1 = 0

and can be chosen arbitrarily from ker dω . Then the higher
order coefficients u2, u3, etc., are found recurrently as fol-
lows. Let the first q coefficients be known. Then we have

dωur +
1

2
Jr = 0, r = 1, . . . , q,

Jr =

r−1∑
p=1

[up, ur−p].
(16)

The next (q + 1)th coefficient should satisfy the equation

dωuq+1 +
1

2
Jq+1 = 0, (17)

and we should show that Eq. (2) is solvable. Let

u(q) =

q∑
r=1

λrur

denote the qth partial sum of the series (15). We obtain from
Eq. (1)

[ω + u(q), [ω + u(q), ω + u(q)]] = 0.

Taking the (q+1)th power in λ of the expression above, this
gives

[ω, Jq+1] +

q∑
r=1

[uq+1−r, 2[ω, ur] + Jr] = 0.

By Eq. (16),
2[ω, ur] + Jr = −2dur,

which gives

[ω, Jq+1]− 2

q∑
r=1

[uq+1−r, dur] = 0. (18)

We have

dJq+1 =

q∑
r=1

([dur, uq+1−r]− [ur, duq+1−r]) =

= −2
q∑
r=1

[uq+1−r, dur],

so Eq. (18) becomes

[ω, Jq+1] + dJq+1 = dωJq+1 = 0.

Hence, we obtain Jq+1 ∈ ker dω ∩ Ω2(ω). By assumption,
H2(ω) = {0}, which implies Jq+1 ∈ im dω ∩ Ω2(ω), i.e.,
Eq. (2) is indeed has a solution. The coefficient uq+1 can be
chosen uniquely if we require that it has zero projection to
ker dω . �

By Proposition 4, the cohomology groupH2(ω) obstructs
the existence of smooth deformations of ω within the fixed-
curvature manifoldM(ϕ(ω) = ϕ̄). Indeed, for H2(ω) ̸=
{0}, Eq. (2) may be unsolvable and not all coefficients uq of
the power series (15)may exist. The subspaceker dω∩Ω1(ω)
consists of vectors tangent to the manifoldM(ϕ̄) at the point
ω. If this subspace is trivial thenM(ϕ̄) locally consists of one
point ω. The condition ker dω ∩ Ω1(ω) ̸= {0} in Proposi-
tion 4 is certainly satisfied if the first cohomology group is
nontrivial,H1(ω) ̸= {0}.

5. Yang-Mills equations
Another application of the cohomology group H2(ω) is

found in the Yang-Mills theory [1], as described below.
Let a T -invariant inner product ⟨, ⟩ exist on Ω,

⟨T (g)ξ, T (g)η⟩ = ⟨ξ, η⟩, g ∈ G.

This is true, for instance, if Ω is a pre-Hilbert space and the
groupG is compact. In this case, the inner product ⟨, ⟩′ onΩ
is averaged over the groupG to a T -invariant inner product,

⟨ξ, η⟩ =
∫
G

⟨T (g)ξ, T (g)η⟩′ ∂g.

Here ∂g is a left-invariant measure onG.
Further we assume that homogeneous elements of differ-

ent degrees are orthogonal,

⟨Ωk,Ωk
′
⟩ = 0, k ̸= k′.
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By Corollary 2, the inner product ⟨, ⟩ generates the gauge-
invariant energy (or action) functional

E(ω) = ∥ϕ(ω)∥2 = ⟨ϕ(ω), ϕ(ω)⟩,
E(K(g)ω) = E(ω), ω ∈ Ω1, g ∈ G.

Gauge fields ω of zero curvatures ϕ(ω) = 0 provide the
global minimum E(ω) = 0 of the energy functional.

Consider the local minimisation problem

ω : E(ω)→ min (19)

in terms of the Euler-Lagrange formalism. The solutions to
the problem (19) are gauge fields ω, such that their small
deformations infintesimally preserve the value of the energy
functional. By definitions (6), (7), we have, for all u ∈ Ω1,

E(ω + u)− E(ω) = 2⟨dωu, ϕ(ω)⟩+O(∥u∥2) =
= 2⟨u, d∗ω(ϕ(ω))⟩+O(∥u∥2).

Here d∗ω is the operator adjoint to dω ,

⟨dωξ, η⟩ = ⟨ξ, d∗ωη⟩, ξ, η ∈ Ω.

Solutions to the problem (19) satisfy the Euler-Lagrange
equation

d∗ω(ϕ(ω)) = 0. (20)

The nonlinear Eq. (20) is called the Yang-Mills equation.
The existence of the adjoint operator d∗ω is guaranteed,

for instance, if Ω is a Hilbert space and dω is bounded. In a
more general context, Eq. (20) can be replaced by the condi-
tion ϕ(ω) ⊥ im dω .

Proposition 5. Let ω be a solution to Eq. (20) with triv-
ial cohomology class [ϕ(ω)] = 0 ∈ H2(ω) (and so trivial
first Chern class c1(ω) = 0). Then ω is of zero curvature,
ϕ(ω) = 0, and so provides the global minimum of the energy
functional (and then all Chern classes are trivial, ck(ω) = 0).

Proof. By assumption, we have d∗ω(ϕ(ω)) = 0 and
ϕ(ω) = dω(ξ(ω)) for some ξ(ω) ∈ Ω1(ω). Then

E(ω) = ⟨dω(ξ(ω)), ϕ(ω)⟩ = ⟨ξ(ω), d∗ω(ϕ(ω))⟩ = 0.

This implies ϕ(ω) = 0. �
The statement inverse to Proposition 5 is also true. The

solutions to Eq. (20) with zero curvature ϕ(ω) = 0 obviously
have trivial cohomology class [ϕ(ω)] = 0.

Corollary 5. It follows from Proposition 5 that solutions ω
to the Yang-Mills equation with a nonzero curvature ϕ(ω) ̸=
0 must have nontrivial cohomology classes [ϕ(ω)] ̸= 0, and
hence the second cohomology must be nontrivial,H2(ω) ̸=
{0}. If H2(ω) = {0}, and ϕ(ω) ̸= 0, then ω cannot be
a solution to the Yang-Mills equation. Local minima ω of the
energy functional, E(ω) ̸= 0, have nontrivial cohomology
classes [ϕ(ω)] ̸= 0.

Note that, in the field-theoretical gauge formalism, local
minima of the energy functional are important because the
existence of global minima ϕ(ω) = 0 can be topologically
obstructed.

Due to the T -invariance of the inner product ⟨, ⟩, if ω is
a solution to Eq. (20) then K(g)ω is also a solution (with
the same energy), for all g ∈ G. Thus, the gauge group
K(G) acts on the space Ω1

YM of solutions to the Yang-Mills
equation. It follows from the results of Section 3 that the
cohomology groups H(ω) classify points of the orbit space
Ω1

YM/K(G).
Along with the first equation of Eq. (8), the Yang-Mills

Eq. (20) defines harmonic curvatures with respect to the
Laplacian∆ω = dωd

∗
ω + d∗ωdω ,

∆ω(ϕ(ω)) = 0 iff

dω(ϕ(ω)) = 0, d∗ω(ϕ(ω)) = 0.

This reveals an analogy with the Hodge theory.

6. Conclusion
We have shown that a local part of the gauge formalism

of the physical field theory can be formulated purely alge-
braically, for any graded Lie algebra. Here gauge fields, gauge
groups, covariant derivatives and curvatures/field strengths
find their general algebraic analogues. In this framework,
cohomology groups naturally arise, which are gauge-invari-
ant and encode a useful structural information. Isomorphism
classes of these groups can be described in the spirit of the
Chern-Weil theory of characteristic classes.

Two applications have been discussed: curvature-pre-
serving deformations, closely related to the Gerstenhaber-
Nijenhuis formalism [2, 3], and solutions to the Yang-Mills
equations [1]. In the first case, nontriviality of the second co-
homology group is an obstruction to existence of smooth de-
formations, while in the second one, this nontriviality is nec-
essary for existence of local minima of the energy functional.
The results presented have maximal generality, valid for any
differential and any gauge-invariant inner product on the al-
gebra.

Besides gauge theories, zero-curvaturemanifolds are en-
countered also in the theory of nonlinear evolution equations
integrable by the inverse scattering transform. The first ap-
plication (Proposition 4) reveals (co)homological obstructions
to existence of integrable hierarchies (such as, for instance,
the Ablowitz-Kaup-Newell-Segur hierarchy [4]) on non-Eu-
clidean manifolds. Another example is the Maurer-Cartan
forms in geometry of Lie groups [5]. Here Proposition 4 can
be useful in the relevant deformation theory.

Note finally that the special case of zero differential d =
0 was considered before in the context of cohomologies and
deformations of associative algebras and Lie algebras [2].
This has been recently applied also to a study of homological
structure of orbit spaces for Lax equations on Lie superalge-
bras [3].
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